Pattern of Hyperandrogenemia in Patients with Polycystic Ovary Syndrome at a Tertiary Care Hospital

Authors

  • Izhar Ul Haq Author
  • Muhammad Sami Author
  • Sadaqat Ali Author
  • Qadeer Muhammad Khan Author
  • Fazal Rabi Author
  • Sana S Author

DOI:

https://doi.org/10.51985/

Keywords:

Androgens, Body Mass Index, Cross-Sectional Studies, Dehydroepiandrosterone Sulfate, Polycystic Ovary Syndrome, Testosterone, Women's Health

Abstract

 Objectives: To assess the pattern of hyperandrogenemia in women diagnosed with polycystic ovary syndrome (PCOS). Study Design and Setting: This was a descriptive cross-sectional study conducted at Hayatabad Medical Complex, Medical Teaching Institution (MTI), Peshawar.

 

Methodology: A total of 133 women aged 18–50 years with PCOS, diagnosed using the Rotterdam criteria, were enrolled through non-probability convenience sampling. Women with prior hormone therapy, hysterectomy, ovarian dermoid, or pelvic inflammatory disease were excluded. Serum levels of total testosterone (>88 ng/dl), free testosterone (>0.66 ng/dl), and DHEAS (>2750 ng/ml) were measured and stratified with age, BMI, and menopausal status. Data were analyzed using SPSS version 26, applying the chi-square test with a significance level of p < 0.05.

 

Results: Elevated free testosterone was observed in 34.6% of participants, followed by total testosterone in 24.8% and DHEAS in 24.1%. A statistically significant association was found between age and raised DHEAS (p = 0.046), while no significant associations were observed with BMI or menopausal status.

 

Conclusions: Free testosterone was the most frequently elevated androgen marker in women with PCOS, supporting its role in biochemical assessment. The age-related rise in DHEAS suggests the need for individualized hormonal interpretation to enhance diagnostic accuracy and guide management 

References

1. Joham AE, Norman RJ, Stener-Victorin E, Legro RS, Franks

S, Moran LJ, Boyle J, Teede HJ. Polycystic ovary syndrome.

Lancet Diabetes Endocrinol. 2022 Sep;10(9):668-680. doi:

10.1016/S2213-8587(22)00163-2

2. Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi

MO, Dokras A, Laven J, Hoeger K, Piltonen TT. Polycystic

ovary syndrome. Nat Rev Dis Primers. 2024 Apr 18;10(1):27.

doi: 10.1038/s41572-024-00511-3.

3. Siddiqui S, Mateen S, Ahmad R, Moin S. A brief insight into

the etiology, genetics, and immunology of polycystic ovarian

syndrome (PCOS). J Assist Reprod Genet. 2022

Nov;39(11):2439-2473. doi: 10.1007/s10815-022-02625-7.

4. Ye W, Xie T, Song Y, Zhou L. The role of androgen and its

related signals in PCOS. J Cell Mol Med. 2021 Feb;25(4):1825-

1837. doi: 10.1111/jcmm.16205.

5. Sardana K, Muddebihal A, Sehrawat M, Bansal P, Khurana

A. An updated clinico-investigative approach to diagnosis of

cutaneous hyperandrogenism in relation to adult female acne,

female pattern alopecia & hirsutism a primer for dermatologists.

Expert Rev Endocrinol Metab. 2024 Mar;19(2):111-128. doi:

10.1080/17446651.2023.2299400.

6. Singh D. Nanotechnology-based Diagnostic Approaches for

Early Detection and Monitoring of Polycystic Ovary Syndrome

(PCOS). Current Analytical Chemistry. 2025;21(4):263-75.

https://doi.org/10.2174/0115734110311450240612051821

7. Dar, Mohd Altaf, Maqbool, Mudasir, Qadrie, Zulfkar, Ara,

Irfat and Qadir, Afshana. "Unraveling PCOS: Exploring its

causes and diagnostic challenges" Open Health, vol. 5, no. 1,

2024, pp. 20230026. https://doi.org/10.1515/ohe-2023-0026

8. Taieb A, Feryel A. Deciphering the Role of Androgen in the

Dermatologic Manifestations of Polycystic Ovary Syndrome

Patients: A State-of-the-Art Review. Diagnostics (Basel).

2024 Nov 16;14(22):2578. doi: 10.3390/diagnostics14222578.

9. Karakas SE. New biomarkers for diagnosis and management

of polycystic ovary syndrome. Clin Chim Acta. 2017

Aug;471:248-253. doi: 10.1016/j.cca.2017.06.009.

10. Mizgier M, Sansoni V, Wiêckowska B, Jarz¹bek-Bielecka G,

Formanowicz D, Kêdzia W, Banfi G, Lombardi G. The

correlations between serum bone biomarkers and those related

to metabolic and hormonal profile, low-grade inflammation

and redox balance, in lean and overweight PCOS adolescent

girls. Front Nutr. 2025 Jul 7;12:1477992. doi: 10.3389/ fnut.

2025.1477992

11. Mansour A, Noori M, Hakemi MS, Haghgooyan Z, MohajeriTehrani MR, Mirahmad M, Sajjadi-Jazi SM.

Hyperandrogenism and anthropometric parameters in women

with polycystic ovary syndrome. BMC Endocr Disord. 2024

Sep 27;24(1):201. doi: 10.1186/s12902-024-01733-y.

12. Tammo O. Understanding Polycystic Ovary Syndrome: A

Comprehensive Guide [Internet]. Understanding Polycystic

Ovary Syndrome - Symptoms, Diagnosis, and Treatment

Options. IntechOpen; 2025. Available from: http://dx.doi.org/

10.5772/intechopen.1010597

13. Huang A, Brennan K, Azziz R. Prevalence of

hyperandrogenemia in the polycystic ovary syndrome

diagnosed by the National Institutes of Health 1990 criteria.

Fertil Steril. 2010 Apr;93(6):1938-41. doi: 10.1016/j.fertnstert.

2008.12.138.

14. Carmina E, Longo RA. Increased Prevalence of Elevated

DHEAS in PCOS Women with Non-Classic (B or C)

Phenotypes: A Retrospective Analysis in Patients Aged 20 to

29 Years. Cells. 2022 Oct 17;11(20):3255. doi: 10.3390/

cells11203255.

15. Bizuneh AD, Joham AE, Teede H, Mousa A, Earnest A,

Hawley JM, Smith L, Azziz R, Arlt W, Tay CT. Evaluating

the diagnostic accuracy of androgen measurement in polycystic

ovary syndrome: a systematic review and diagnostic metaanalysis to inform evidence-based guidelines. Hum Reprod

Update. 2025 Jan 1;31(1):48-63. doi: 10.1093/humupd/

dmae028. .

16. Nowosad K, Ostrowska M, Glibowski P, I³owiecka K, Koch

W. Dietary and Genetic Aspects of Polycystic Ovary Syndrome

(PCOS) in Polish Women-Part I: Nutritional Status and Dietary

Intake. Nutrients. 2025 Jul 21;17(14):2377. doi: 10.3390/

nu17142377.

17. Torchen LC, Tsai JN, Jasti P, Macaya R, Sisk R, Dapas ML,

Hayes MG, Urbanek M, Dunaif A. Hyperandrogenemia is

Common in Asymptomatic Women and is Associated with

Increased Metabolic Risk. Obesity (Silver Spring). 2020

Jan;28(1):106-113. doi: 10.1002/oby.22659. .

18. Christ JP, Cedars MI. Current Guidelines for Diagnosing

PCOS. Diagnostics (Basel). 2023 Mar 15;13(6):1113. doi:

10.3390/diagnostics13061113.

19. Baracat EC, Baracat MCP, José M SJ Jr. Are there new insights

for the definition of PCOS? Gynecol Endocrinol. 2022

Sep;38(9):703-704. doi: 10.1080/09513590.2022.2121387.

20. Calcaterra V, Tiranini L, Magenes VC, Rossi V, Cucinella L,

Nappi RE, Zuccotti G. Impact of Obesity on Pubertal Timing

and Male Fertility. J Clin Med. 2025 Jan 25;14(3):783. doi:

10.3390/jcm14030783.

21. Romero-Ruiz A, Pineda B, Ovelleiro D, Perdices-Lopez C,

Torres E, Vazquez MJ, Guler I, Jiménez Á, Pineda R, Persano

M, Romero-Baldonado C, Arjona JE, Lorente J, Muñoz C,

Paz E, Garcia-Maceira FI, Arjona-Sánchez Á, Tena-Sempere

M. Molecular diagnosis of polycystic ovary syndrome in

obese and non-obese women by targeted plasma miRNA

profiling. Eur J Endocrinol. 2021 Oct 8;185(5):637-652. doi:

10.1530/EJE-21-0552.

22. Hoeger KM, Dokras A, Piltonen T. Update on PCOS:

Consequences, Challenges, and Guiding Treatment. J Clin

Endocrinol Metab. 2021 Mar 8;106(3):e1071-e1083. doi:

10.1210/clinem/dgaa839.

Downloads

Published

2025-10-14

Issue

Section

Original Articles

Similar Articles

31-40 of 44

You may also start an advanced similarity search for this article.