Artificial Intelligence in Surgery: Learning and Applications

Authors

  • Umair Tahir Author
  • Iqra Sadaf Author
  • Muhammad Ayub Author
  • S.A.M Khuzaemah Hashmi Author
  • Iqra Tanzeel Author

DOI:

https://doi.org/10.51985/JBUMDC2025592

Keywords:

Artificial intelligence; surgery learning; AI-assisted surgery; robotics

Abstract

 Artificial intelligence (AI) has transformed the field of surgery; using machine learning algorithms in domains like computer vision and operative robotics can fundamentally alter patient screening, diagnosis, risk assessment, treatment, and followup procedures in operating rooms and both before and after surgery. This quick review summarized AI-assisted surgical learning and applications in various surgery sectors. We explained the usefulness of AI in all aspects of surgery learning and competency. Our review focused on implementing AI in several aspects of patient care, including early screening, intra-operation robotics, post-operation monitoring, and follow-up. Horizon scanning of AI technologies in surgery identifies developments that can improve medical procedures and transform future norms. Thus, over the next ten years, experimental progress will quickly translate into practical applications. In comparison, AI may necessitate a change in work procedures. 

References

1. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial

intelligence in surgery: promises and perils. Annals of surgery.

2018;268(1):70-6. DOI: https://doi.org/ 10.1097/SLA.

0000000000002693

2. Yu KH, Beam AL, Kohane IS. Artificial intelligence in

healthcare. Nature biomedical engineering. 2018;2(10): 719-

31. DOI: https://doi.org/10.1038/s41551-018-0305-z

3. Pakkasjärvi N, Luthra T, Anand S. Artificial intelligence in

surgical learning. Surgeries. 2023;4(1):86-97. DOI: https://

doi.org/10.3390/surgeries4010010

4. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial

intelligence in surgery: the future is now. European Surgical

Research. 2024;65(1):22-39. DOI: https://doi.org/ 10.1159/

000536393

5. Aggarwal R, Sounderajah V, Martin G, Ting DS,

Karthikesalingam A, King D, Ashrafian H, Darzi A. Diagnostic

accuracy of deep learning in medical imaging: a systematic

review and meta-analysis. NPJ digital medicine. 2021;4(1):65.

DOI: https://doi.org/10.1038/s41746-021-00438-z

6. Harrison CJ, Sidey-Gibbons CJ. Machine learning in medicine:

a practical introduction to natural language processing. BMC

medical research methodology. 2021;21(1):158. DOI: https://

doi.org/10.1186/s12874-021-01347-1

7. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel

JY, Van Calster B. A systematic review shows no performance

benefit of machine learning over logistic regression for clinical

prediction models. Journal of clinical epidemiology.

2019;110:12-22. DOI: https://doi.org/10.1016/ j.jclinepi.2019.

02.004

8. Gravesteijn BY, Nieboer D, Ercole A, Lingsma HF, Nelson

D, Van Calster B, Steyerberg EW, Åkerlund C, Amrein K,

Andelic N, Andreassen L. Machine learning algorithms

performed no better than regression models for prognostication

in traumatic brain injury. Journal of clinical epidemiology.

2020;122:95-107. DOI: https://doi.org/10.1016 /j.jclinepi

.2020.03.005

9. Nusinovici S, Tham YC, Yan MY, Ting DS, Li J, Sabanayagam

C, Wong TY, Cheng CY. Logistic regression was as good as

machine learning for predicting major chronic diseases. Journal

of clinical epidemiology. 2020;122:56-69. DOI: https://doi.org/

10.1016/j.jclinepi.2020.03.002

10. Lynam AL, Dennis JM, Owen KR, Oram RA, Jones AG,

Shields BM, Ferrat LA. Logistic regression has similar

performance to optimised machine learning algorithms in a

clinical setting: application to the discrimination between type

1 and type 2 diabetes in young adults. Diagnostic and

prognostic research. 2020;4:1-0. DOI: https://doi.org/10. 1186/

s41512-020-00075-2

11. Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial

intelligence in surgery. Frontiers of medicine. 2020;14:417-

30. DOI: https://doi.org/10.1007/s11684-020-0770-0

12. Coalition for Health AI T. Blueprint for trustworthy AI

implementation guidance and assurance for healthcare. DOI:

https://www.chai.org/wp-content/uploads/2024/05/blueprintfor-trustworthy-ai_V1.0-2.pdf

13. Guidance WH. Ethics and governance of artificial intelligence

for health. World Health Organization. 2021 Jun 28. DOI:

https://iris.who.int/bitstream/handle/10665/341996/978924

0029200-eng.pdf

14. Pakkasjärvi N, Krishnan N, Ripatti L, Anand S. Learning

curves in pediatric robot-assisted pyeloplasty: a systematic

review. Journal of clinical medicine. 2022;11(23):6935. DOI:

https://doi.org/10.3390/jcm11236935

15. Winkler-Schwartz A, Bissonnette V, Mirchi N, Ponnudurai

N, Yilmaz R, Ledwos N, Siyar S, Azarnoush H, Karlik B,

Del Maestro RF. Artificial intelligence in medical education:

best practices using machine learning to assess surgical

expertise in virtual reality simulation. Journal of surgical

education. 2019;76(6):1681-90. DOI: https://doi.org/10.1016/

j.jsurg.2019.05.015

16. Seil R, Hoeltgen C, Thomazeau H, Anetzberger H, Becker

R. Surgical simulation training should become a mandatory

part of orthopaedic education. Journal of Experimental

Orthopaedics. 2022;9(1):22. DOI: https://doi.org/10.1186/

s40634-022-00455-1

17. Gazis A, Karaiskos P, Loukas C. Surgical gesture recognition

in laparoscopic tasks based on the transformer network and

self-supervised learning. Bioengineering. 2022;9(12):737.

DOI: https://doi.org/10.3390 /bioengineering912 0737

18. Alonso-Silverio GA, Perez-Escamirosa F, Bruno-Sanchez R,

Ortiz-Simon JL, Muñoz-Guerrero R, Minor-Martinez A,

Alarcón-Paredes A. Development of a laparoscopic box trainer

based on open source hardware and artificial intelligence for

objective assessment of surgical psychomotor skills. Surgical

Innovation. 2018;25(4):380-8. DOI: https://doi.org/10.1177/

1553350618777045

19. Moglia A, Morelli L, D’Ischia R, Fatucchi LM, Pucci V,

Berchiolli R, Ferrari M, Cuschieri A. Ensemble deep learning

for the prediction of proficiency at a virtual simulator for

robot-assisted surgery. Surgical Endoscopy. 2022 ;36(9):6473-

9. DOI: https://doi.org/10.1007/s00464-021-08999-6

20. Oquendo YA, Riddle EW, Hiller D, Blinman TA,

Kuchenbecker KJ. Automatically rating trainee skill at a

pediatric laparoscopic suturing task. Surgical endoscopy.

2018;32:1840-57. DOI: https://doi.org/10.1007/s00464-017-

5873-6

21. Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone

P. The role of artificial intelligence in healthcare: a structured

literature review. BMC medical informatics and decision

making. 2021;21:1-23. DOI: https://doi.org/10.1186/s12911-

021-01488-9

22. Schwalbe N, Wahl B. Artificial intelligence and the future of

global health. The Lancet. 2020;395(10236):1579-86. DOI:

https://doi.org/10.1016/S0140-6736(20)30226-9

23. Milne-Ives M, de Cock C, Lim E, Shehadeh MH, de

Pennington N, Mole G, Normando E, Meinert E. The

effectiveness of artificial intelligence conversational agents

in health care: systematic review. Journal of medical Internet

research. 2020 ;22(10):e20346. DOI: https://doi.org/10.2196

/20346

24. Tanaka H, Nakamura S. The acceptability of virtual characters

as social skills trainers: usability study. JMIR human factors.

2022;9(1):e35358. DOI: https://doi.org/10.2196/35358

25. Shorey S, Ang E, Yap J, Ng ED, Lau ST, Chui CK. A virtual

counseling application using artificial intelligence for

communication skills training in nursing education:

development study. Journal of medical Internet research.

2019;21(10):e14658. DOI: http://www.jmir.org/2019/11/

e17064

26. Antel R, Abbasgholizadeh-Rahimi S, Guadagno E, Harley

JM, Poenaru D. The use of artificial intelligence and virtual

reality in doctor-patient risk communication: A scoping review.

Patient Education and Counseling. 2022;105(10):3038-50.

DOI: https://doi.org/10.1016/j.pec.2022.06.006

27. Modarai B. Progressive guidance on the modern management

of abdominal aorto-iliac artery aneurysms. European Journal

of Vascular and Endovascular Surgery. 2019;57(1):4-5. DOI:

https://doi.org/10.1016/j.ejvs.2018.12.00

28. Kuo RY, Harrison C, Curran TA, Jones B, Freethy A, Cussons

D, Stewart M, Collins GS, Furniss D. Artificial intelligence

in fracture detection: a systematic review and meta-analysis.

Radiology. 2022;304(1):50-62. DOI: https://doi.org/10.1148

/radiol.211785

29. Li MD, Ahmed SR, Choy E, Lozano-Calderon SA, KalpathyCramer J, Chang CY. Artificial intelligence applied to

musculoskeletal oncology: a systematic review. Skeletal

Radiology. 2022:1-2. DOI: https://doi.org/10.1007/s00256-

021-03820-w

30. Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM,

Aziz A, Mathur P, Islam S, Yeom KW, Lawlor A, Killeen RP.

Radiology artificial intelligence: a systematic review and

evaluation of methods (RAISE). European radiology.

2022;32(11):7998-8007. DOI: https://doi.org/10.1007/s00330-

022-08784-6

31. Clusmann J, Kolbinger FR, Muti HS, Carrero ZI, Eckardt JN,

Laleh NG, Löffler CM, Schwarzkopf SC, Unger M, Veldhuizen

GP, Wagner SJ. The future landscape of large language models

in medicine. Communications medicine. 2023;3(1):141. DOI:

https://doi.org/10.1038/s43856-023-00370-1

32. Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L,

Elepaño C, Madriaga M, Aggabao R, Diaz-Candido G,

Maningo J, Tseng V. Performance of ChatGPT on USMLE:

potential for AI-assisted medical education using large language

models. PLoS digital health. 2023;2(2):e0000198. DOI:

https://doi.org/10.1371/journal.pdig.0000198

33. Yan L, Sha L, Zhao L, Li Y, Martinez-Maldonado R, Chen

G, Li X, Jin Y, Gaševiæ D. Practical and ethical challenges

of large language models in education: A systematic scoping

review. British Journal of Educational Technology.

2024;55(1):90-112. DOI: https://doi.org/10.1111/bjet.13370

34. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial

intelligence in surgery: the future is now. European Surgical

Research. 2024;65(1):22-39. DOI: https://doi.org/10.1159/

000536393

35. El Hechi MW, Maurer LR, Levine J, Zhuo D, El Moheb M,

Velmahos GC, Dunn J, Bertsimas D, Kaafarani HM. Validation

of the artificial intelligence-based predictive optimal trees in

emergency surgery risk (POTTER) calculator in emergency

general surgery and emergency laparotomy patients. Journal

of the American College of Surgeons. 2021;232(6):912-9.

DOI: https://doi.org/10.1016/j.jamcollsurg.2021.02.009

36. Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour

M, Pardalos PM, Lipori G, Hogan WR, Efron PA, Moore F,

Moldawer LL. MySurgeryRisk: development and validation

of a machine-learning risk algorithm for major complications

and death after surgery. Annals of surgery. 2019;269(4):652-

62. DOI: https://doi.org/10.1097/SLA.0000000000002706

37. Dembrower K, Crippa A, Colón E, Eklund M, Strand F.

Artificial intelligence for breast cancer detection in screening

mammography in Sweden: a prospective, population-based,

paired-reader, non-inferiority study. The Lancet Digital Health.

2023;5(10):e703-11. DOI: https://doi.org/10.1016/S2589-

7500(23)00153-X

38. Lång K, Josefsson V, Larsson AM, Larsson S, Högberg C,

Sartor H, Hofvind S, Andersson I, Rosso A. Artificial

intelligence-supported screen reading versus standard double

reading in the Mammography Screening with Artificial

Intelligence trial (MASAI): a clinical safety analysis of a

randomised, controlled, non-inferiority, single-blinded,

screening accuracy study. The Lancet Oncology. 2023;24(8):

936-44. DOI: https://doi.org/10.1016/S1470-2045(23)00298-

X

39. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C,

Tsaroucha AK. Artificial intelligence in colorectal cancer

screening, diagnosis and treatment. A new era. Current

Oncology. 2021;28(3):1581-607. DOI: https://doi.org/10.3390/

curroncol28030149

40. Schreuder A, Scholten ET, van Ginneken B, Jacobs C. Artificial

intelligence for detection and characterization of pulmonary

nodules in lung cancer CT screening: ready for practice?.

Translational lung cancer research. 2021;10(5):2378. DOI:

https://doi.org/10.21037/tlcr-2020-lcs-06

41. Tao K, Bian Z, Zhang Q, Guo X, Yin C, Wang Y, Zhou K,

Wan S, Shi M, Bao D, Yang C. Machine learning-based

genome-wide interrogation of somatic copy number aberrations

in circulating tumor DNA for early detection of hepatocellular

carcinoma. EBioMedicine. 2020;56. DOI: https://doi.org/10.

1016/j.ebiom.2020.102811

42. Hashimoto DA, Ward TM, Meireles OR. The role of artificial

intelligence in surgery. Advances in Surgery. 2020;54:89-101.

DOI: https://doi.org/10.1016/j.yasu.2020.05.010

43. Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera

AM, Pucher PH, Navarrete-Welton A, Sankaranarayanan G,

Brunt LM, Okrainec A, Alseidi A. Artificial intelligence for

intraoperative guidance: using semantic segmentation to

identify surgical anatomy during laparoscopic cholecystectomy.

Annals of surgery. 2022;276(2):363-9. DOI: https://doi.org/

10.1097/SLA.0000000000004594

44. Hashimoto DA, Rosman G, Witkowski ER, Stafford C,

Navarette-Welton AJ, Rattner DW, Lillemoe KD, Rus DL,

Meireles OR. Computer vision analysis of intraoperative

video: automated recognition of operative steps in laparoscopic

sleeve gastrectomy. Annals of surgery. 2019;270(3):414-21.

DOI: https://doi.org/10.1097/SLA.0000000000003460

45. Nespolo RG, Yi D, Cole E, Valikodath N, Luciano C,

Leiderman YI. Evaluation of artificial intelligence–based

intraoperative guidance tools for phacoemulsification cataract

surgery. JAMA ophthalmology. 2022;140(2):170-7. DOI:

https://doi.org/10.1001/jamaophthalmol.2021.5742

46. Li A, Javidan AP, Namazi B, Madani A, Forbes TL.

Development of an artificial intelligence tool for intraoperative

guidance during endovascular aneurysm repair. Journal of

Vascular Surgery. 2022;76(4):e114-5. DOI: https://doi.org/

10.1016/j.jvs.2022.07.034

47. Patel RJ, Lee AM, Hallsten J, Lane JS, Barleben AR, Malas

MB. Use of surgical augmented intelligence maps can reduce

radiation and improve safety in the endovascular treatment

of complex aortic aneurysms. Journal of vascular surgery.

2023;77(4):982-90. DOI: https://doi.org/10. 1016/j.jvs.

2022.12.033

48. Ludbrook GL. The hidden pandemic: the cost of postoperative

complications. Current anesthesiology reports. 2022:1-9. DOI:

https://doi.org/10.1007/s40140-021-00493-y

49. Stam WT, Goedknegt LK, Ingwersen EW, Schoonmade LJ,

Bruns ER, Daams F. The prediction of surgical complications

using artificial intelligence in patients undergoing major

abdominal surgery: a systematic review. Surgery.

2022;171(4):1014-21. DOI: https://doi.org/10. 1016/j .surg.

2021.10.002

50. Wen R, Zheng K, Zhang Q, Zhou L, Liu Q, Yu G, Gao X,

Hao L, Lou Z, Zhang W. Machine learning-based random

forest predicts anastomotic leakage after anterior resection

for rectal cancer. Journal of gastrointestinal oncology.

2021;12(3):921. DOI: https://doi.org/10.21037/jgo-20-436

51. Azimi K, Honaker MD, Chalil Madathil S, Khasawneh MT.

Post-operative infection prediction and risk factor analysis in

colorectal surgery using data mining techniques: a pilot study.

Surgical infections. 2020;21(9):784-92. DOI:

52. Chen D, Afzal N, Sohn S, Habermann EB, Naessens JM,

Larson DW, Liu H. Postoperative bleeding risk prediction for

patients undergoing colorectal surgery. Surgery.

2018;164(6):1209-16. DOI: https://doi.org/10.1089/sur.

2019.138

53. Cao Y, Fang X, Ottosson J, Näslund E, Stenberg E. A

comparative study of machine learning algorithms in predicting

severe complications after bariatric surgery. Journal of clinical

medicine. 2019;8(5):668. DOI: https://doi.org/10.3390/

jcm8050668

54. Nudel J, Bishara AM, de Geus SW, Patil P, Srinivasan J,

Hess DT, Woodson J. Development and validation of machine

learning models to predict gastrointestinal leak and venous

thromboembolism after weight loss surgery: an analysis of

the MBSAQIP database. Surgical endoscopy. 2021;35:182-

91. DOI: https://doi.org/10.1007/s00464-020-07378-x

55. Merath K, Hyer JM, Mehta R, Farooq A, Bagante F, Sahara

K, Tsilimigras DI, Beal E, Paredes AZ, Wu L, Ejaz A. Use

of machine learning for prediction of patient risk of

postoperative complications after liver, pancreatic, and

colorectal surgery. Journal of Gastrointestinal Surgery. 2020

;24(8):1843-51. DOI: https://doi.org/10.1007/s11605-019-

04338-2

56. Bian Y, Xiang Y, Tong B, Feng B, Weng X. Artificial

intelligence–assisted system in postoperative follow-up of

orthopedic patients: exploratory quantitative and qualitative

study. Journal of Medical Internet Research. 2020;22(5):

e16896. DOI: https://doi.org/10.2196/16896

57. van de Sande D, van Genderen ME, Verhoef C, Huiskens J,

Gommers D, van Unen E, Schasfoort RA, Schepers J, van

Bommel J, Grünhagen DJ. Optimizing discharge after major

surgery using an artificial intelligence–based decision support

tool (DESIRE): An external validation study. Surgery.

2022;172(2):663-9. DOI: https://doi.org/10.1016/ j.surg.

2022.03.031

58. van der Niet AG, Bleakley A. Where medical education meets

artificial intelligence:‘Does technology care?’. Medical

Education. 2021;55(1):30-6. DOI: https://doi.org/10.1111

/medu.14131

59. Rampton V, Mittelman M, Goldhahn J. Implications of

artificial intelligence for medical education. The Lancet

Digital Health. 2020;2(3):e111-2. DOI: https://doi.org/10.1016

/S2589-7500(20)30023-6

60. Moglia A, Georgiou K, Morelli L, Toutouzas K, Satava RM,

Cuschieri A. Breaking down the silos of artificial intelligence

in surgery: glossary of terms. Surgical Endoscopy.

2022;36(11):7986-97. DOI: https://doi.org/10.1007/s00464-

022-09371-y

61. Inkster B, Sarda S, Subramanian V. An empathy-driven,

conversational artificial intelligence agent (Wysa) for digital

mental well-being: real-world data evaluation mixed-methods

study. JMIR mHealth and uHealth. 2018;6(11):e12106. DOI:

https://doi.org/10.2196/12106

62. Ashrafian H, Clancy O, Grover V, Darzi A. The evolution of

robotic surgery: surgical and anaesthetic aspects. BJA: British

Journal of Anaesthesia. 2017;119(suppl_1):i72-84. DOI:

https://doi.org/10.1093/bja/aex383

63. Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC,

Mohr AM, Rashidi P, Upchurch GR, Bihorac A. Artificial

intelligence and surgical decision-making. JAMA surgery.

2020;155(2):148-58. DOI: https://doi.org/10.1001

/jamasurg.2019.4917

64. Zhao B, Waterman RS, Urman RD, Gabriel RA. A machine

learning approach to predicting case duration for robot-assisted

surgery. Journal of medical systems. 2019;43(2):32. DOI:

https://doi.org/10.1007/s10916-018-1151-y

65. Alip SL, Kim J, Rha KH, Han WK. Future platforms of

robotic surgery. Urologic Clinics. 2022;49(1):23-38. DOI:

https://doi.org/10.1016/j.ucl.2021.07.008

66. Jamjoom AA, Jamjoom AM, Thomas JP, Palmisciano P, Kerr

K, Collins JW, Vayena E, Stoyanov D, Marcus HJ,

iRobotSurgeon Collaboration. Autonomous surgical robotic

systems and the liability dilemma. Frontiers in Surgery. 2022

;9:1015367. 9: p. 1015367. DOI: https://doi.org/10.3389/

fsurg.2022.1015367

67. Egert M, Steward JE, Sundaram CP. Machine learning and

artificial intelligence in surgical fields. Indian journal of

surgical oncology. 2020;11(4):573-7. DOI: https://doi.org/

10.1007/s13193-020-01166-8

68. Li J, Yang X, Chu G, Feng W, Ding X, Yin X, Zhang L, Lv

W, Ma L, Sun L, Feng R. Application of improved robotassisted laparoscopic telesurgery with 5G technology in

urology. European urology. 2023;83(1):41-4. DOI:

https://doi.org/10.1016/j.eururo.2022.06.018

Downloads

Published

2025-08-25

Issue

Section

Review Article

Similar Articles

1-10 of 24

You may also start an advanced similarity search for this article.