Artificial Intelligence in Surgery: Learning and Applications
DOI:
https://doi.org/10.51985/JBUMDC2025592Keywords:
Artificial intelligence; surgery learning; AI-assisted surgery; roboticsAbstract
Artificial intelligence (AI) has transformed the field of surgery; using machine learning algorithms in domains like computer vision and operative robotics can fundamentally alter patient screening, diagnosis, risk assessment, treatment, and followup procedures in operating rooms and both before and after surgery. This quick review summarized AI-assisted surgical learning and applications in various surgery sectors. We explained the usefulness of AI in all aspects of surgery learning and competency. Our review focused on implementing AI in several aspects of patient care, including early screening, intra-operation robotics, post-operation monitoring, and follow-up. Horizon scanning of AI technologies in surgery identifies developments that can improve medical procedures and transform future norms. Thus, over the next ten years, experimental progress will quickly translate into practical applications. In comparison, AI may necessitate a change in work procedures.
References
1. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial
intelligence in surgery: promises and perils. Annals of surgery.
2018;268(1):70-6. DOI: https://doi.org/ 10.1097/SLA.
0000000000002693
2. Yu KH, Beam AL, Kohane IS. Artificial intelligence in
healthcare. Nature biomedical engineering. 2018;2(10): 719-
31. DOI: https://doi.org/10.1038/s41551-018-0305-z
3. Pakkasjärvi N, Luthra T, Anand S. Artificial intelligence in
surgical learning. Surgeries. 2023;4(1):86-97. DOI: https://
doi.org/10.3390/surgeries4010010
4. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial
intelligence in surgery: the future is now. European Surgical
Research. 2024;65(1):22-39. DOI: https://doi.org/ 10.1159/
000536393
5. Aggarwal R, Sounderajah V, Martin G, Ting DS,
Karthikesalingam A, King D, Ashrafian H, Darzi A. Diagnostic
accuracy of deep learning in medical imaging: a systematic
review and meta-analysis. NPJ digital medicine. 2021;4(1):65.
DOI: https://doi.org/10.1038/s41746-021-00438-z
6. Harrison CJ, Sidey-Gibbons CJ. Machine learning in medicine:
a practical introduction to natural language processing. BMC
medical research methodology. 2021;21(1):158. DOI: https://
doi.org/10.1186/s12874-021-01347-1
7. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel
JY, Van Calster B. A systematic review shows no performance
benefit of machine learning over logistic regression for clinical
prediction models. Journal of clinical epidemiology.
2019;110:12-22. DOI: https://doi.org/10.1016/ j.jclinepi.2019.
02.004
8. Gravesteijn BY, Nieboer D, Ercole A, Lingsma HF, Nelson
D, Van Calster B, Steyerberg EW, Åkerlund C, Amrein K,
Andelic N, Andreassen L. Machine learning algorithms
performed no better than regression models for prognostication
in traumatic brain injury. Journal of clinical epidemiology.
2020;122:95-107. DOI: https://doi.org/10.1016 /j.jclinepi
.2020.03.005
9. Nusinovici S, Tham YC, Yan MY, Ting DS, Li J, Sabanayagam
C, Wong TY, Cheng CY. Logistic regression was as good as
machine learning for predicting major chronic diseases. Journal
of clinical epidemiology. 2020;122:56-69. DOI: https://doi.org/
10.1016/j.jclinepi.2020.03.002
10. Lynam AL, Dennis JM, Owen KR, Oram RA, Jones AG,
Shields BM, Ferrat LA. Logistic regression has similar
performance to optimised machine learning algorithms in a
clinical setting: application to the discrimination between type
1 and type 2 diabetes in young adults. Diagnostic and
prognostic research. 2020;4:1-0. DOI: https://doi.org/10. 1186/
s41512-020-00075-2
11. Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial
intelligence in surgery. Frontiers of medicine. 2020;14:417-
30. DOI: https://doi.org/10.1007/s11684-020-0770-0
12. Coalition for Health AI T. Blueprint for trustworthy AI
implementation guidance and assurance for healthcare. DOI:
https://www.chai.org/wp-content/uploads/2024/05/blueprintfor-trustworthy-ai_V1.0-2.pdf
13. Guidance WH. Ethics and governance of artificial intelligence
for health. World Health Organization. 2021 Jun 28. DOI:
https://iris.who.int/bitstream/handle/10665/341996/978924
0029200-eng.pdf
14. Pakkasjärvi N, Krishnan N, Ripatti L, Anand S. Learning
curves in pediatric robot-assisted pyeloplasty: a systematic
review. Journal of clinical medicine. 2022;11(23):6935. DOI:
https://doi.org/10.3390/jcm11236935
15. Winkler-Schwartz A, Bissonnette V, Mirchi N, Ponnudurai
N, Yilmaz R, Ledwos N, Siyar S, Azarnoush H, Karlik B,
Del Maestro RF. Artificial intelligence in medical education:
best practices using machine learning to assess surgical
expertise in virtual reality simulation. Journal of surgical
education. 2019;76(6):1681-90. DOI: https://doi.org/10.1016/
j.jsurg.2019.05.015
16. Seil R, Hoeltgen C, Thomazeau H, Anetzberger H, Becker
R. Surgical simulation training should become a mandatory
part of orthopaedic education. Journal of Experimental
Orthopaedics. 2022;9(1):22. DOI: https://doi.org/10.1186/
s40634-022-00455-1
17. Gazis A, Karaiskos P, Loukas C. Surgical gesture recognition
in laparoscopic tasks based on the transformer network and
self-supervised learning. Bioengineering. 2022;9(12):737.
DOI: https://doi.org/10.3390 /bioengineering912 0737
18. Alonso-Silverio GA, Perez-Escamirosa F, Bruno-Sanchez R,
Ortiz-Simon JL, Muñoz-Guerrero R, Minor-Martinez A,
Alarcón-Paredes A. Development of a laparoscopic box trainer
based on open source hardware and artificial intelligence for
objective assessment of surgical psychomotor skills. Surgical
Innovation. 2018;25(4):380-8. DOI: https://doi.org/10.1177/
1553350618777045
19. Moglia A, Morelli L, D’Ischia R, Fatucchi LM, Pucci V,
Berchiolli R, Ferrari M, Cuschieri A. Ensemble deep learning
for the prediction of proficiency at a virtual simulator for
robot-assisted surgery. Surgical Endoscopy. 2022 ;36(9):6473-
9. DOI: https://doi.org/10.1007/s00464-021-08999-6
20. Oquendo YA, Riddle EW, Hiller D, Blinman TA,
Kuchenbecker KJ. Automatically rating trainee skill at a
pediatric laparoscopic suturing task. Surgical endoscopy.
2018;32:1840-57. DOI: https://doi.org/10.1007/s00464-017-
5873-6
21. Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone
P. The role of artificial intelligence in healthcare: a structured
literature review. BMC medical informatics and decision
making. 2021;21:1-23. DOI: https://doi.org/10.1186/s12911-
021-01488-9
22. Schwalbe N, Wahl B. Artificial intelligence and the future of
global health. The Lancet. 2020;395(10236):1579-86. DOI:
https://doi.org/10.1016/S0140-6736(20)30226-9
23. Milne-Ives M, de Cock C, Lim E, Shehadeh MH, de
Pennington N, Mole G, Normando E, Meinert E. The
effectiveness of artificial intelligence conversational agents
in health care: systematic review. Journal of medical Internet
research. 2020 ;22(10):e20346. DOI: https://doi.org/10.2196
/20346
24. Tanaka H, Nakamura S. The acceptability of virtual characters
as social skills trainers: usability study. JMIR human factors.
2022;9(1):e35358. DOI: https://doi.org/10.2196/35358
25. Shorey S, Ang E, Yap J, Ng ED, Lau ST, Chui CK. A virtual
counseling application using artificial intelligence for
communication skills training in nursing education:
development study. Journal of medical Internet research.
2019;21(10):e14658. DOI: http://www.jmir.org/2019/11/
e17064
26. Antel R, Abbasgholizadeh-Rahimi S, Guadagno E, Harley
JM, Poenaru D. The use of artificial intelligence and virtual
reality in doctor-patient risk communication: A scoping review.
Patient Education and Counseling. 2022;105(10):3038-50.
DOI: https://doi.org/10.1016/j.pec.2022.06.006
27. Modarai B. Progressive guidance on the modern management
of abdominal aorto-iliac artery aneurysms. European Journal
of Vascular and Endovascular Surgery. 2019;57(1):4-5. DOI:
https://doi.org/10.1016/j.ejvs.2018.12.00
28. Kuo RY, Harrison C, Curran TA, Jones B, Freethy A, Cussons
D, Stewart M, Collins GS, Furniss D. Artificial intelligence
in fracture detection: a systematic review and meta-analysis.
Radiology. 2022;304(1):50-62. DOI: https://doi.org/10.1148
/radiol.211785
29. Li MD, Ahmed SR, Choy E, Lozano-Calderon SA, KalpathyCramer J, Chang CY. Artificial intelligence applied to
musculoskeletal oncology: a systematic review. Skeletal
Radiology. 2022:1-2. DOI: https://doi.org/10.1007/s00256-
021-03820-w
30. Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM,
Aziz A, Mathur P, Islam S, Yeom KW, Lawlor A, Killeen RP.
Radiology artificial intelligence: a systematic review and
evaluation of methods (RAISE). European radiology.
2022;32(11):7998-8007. DOI: https://doi.org/10.1007/s00330-
022-08784-6
31. Clusmann J, Kolbinger FR, Muti HS, Carrero ZI, Eckardt JN,
Laleh NG, Löffler CM, Schwarzkopf SC, Unger M, Veldhuizen
GP, Wagner SJ. The future landscape of large language models
in medicine. Communications medicine. 2023;3(1):141. DOI:
https://doi.org/10.1038/s43856-023-00370-1
32. Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L,
Elepaño C, Madriaga M, Aggabao R, Diaz-Candido G,
Maningo J, Tseng V. Performance of ChatGPT on USMLE:
potential for AI-assisted medical education using large language
models. PLoS digital health. 2023;2(2):e0000198. DOI:
https://doi.org/10.1371/journal.pdig.0000198
33. Yan L, Sha L, Zhao L, Li Y, Martinez-Maldonado R, Chen
G, Li X, Jin Y, Gaševiæ D. Practical and ethical challenges
of large language models in education: A systematic scoping
review. British Journal of Educational Technology.
2024;55(1):90-112. DOI: https://doi.org/10.1111/bjet.13370
34. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial
intelligence in surgery: the future is now. European Surgical
Research. 2024;65(1):22-39. DOI: https://doi.org/10.1159/
000536393
35. El Hechi MW, Maurer LR, Levine J, Zhuo D, El Moheb M,
Velmahos GC, Dunn J, Bertsimas D, Kaafarani HM. Validation
of the artificial intelligence-based predictive optimal trees in
emergency surgery risk (POTTER) calculator in emergency
general surgery and emergency laparotomy patients. Journal
of the American College of Surgeons. 2021;232(6):912-9.
DOI: https://doi.org/10.1016/j.jamcollsurg.2021.02.009
36. Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour
M, Pardalos PM, Lipori G, Hogan WR, Efron PA, Moore F,
Moldawer LL. MySurgeryRisk: development and validation
of a machine-learning risk algorithm for major complications
and death after surgery. Annals of surgery. 2019;269(4):652-
62. DOI: https://doi.org/10.1097/SLA.0000000000002706
37. Dembrower K, Crippa A, Colón E, Eklund M, Strand F.
Artificial intelligence for breast cancer detection in screening
mammography in Sweden: a prospective, population-based,
paired-reader, non-inferiority study. The Lancet Digital Health.
2023;5(10):e703-11. DOI: https://doi.org/10.1016/S2589-
7500(23)00153-X
38. Lång K, Josefsson V, Larsson AM, Larsson S, Högberg C,
Sartor H, Hofvind S, Andersson I, Rosso A. Artificial
intelligence-supported screen reading versus standard double
reading in the Mammography Screening with Artificial
Intelligence trial (MASAI): a clinical safety analysis of a
randomised, controlled, non-inferiority, single-blinded,
screening accuracy study. The Lancet Oncology. 2023;24(8):
936-44. DOI: https://doi.org/10.1016/S1470-2045(23)00298-
X
39. Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C,
Tsaroucha AK. Artificial intelligence in colorectal cancer
screening, diagnosis and treatment. A new era. Current
Oncology. 2021;28(3):1581-607. DOI: https://doi.org/10.3390/
curroncol28030149
40. Schreuder A, Scholten ET, van Ginneken B, Jacobs C. Artificial
intelligence for detection and characterization of pulmonary
nodules in lung cancer CT screening: ready for practice?.
Translational lung cancer research. 2021;10(5):2378. DOI:
https://doi.org/10.21037/tlcr-2020-lcs-06
41. Tao K, Bian Z, Zhang Q, Guo X, Yin C, Wang Y, Zhou K,
Wan S, Shi M, Bao D, Yang C. Machine learning-based
genome-wide interrogation of somatic copy number aberrations
in circulating tumor DNA for early detection of hepatocellular
carcinoma. EBioMedicine. 2020;56. DOI: https://doi.org/10.
1016/j.ebiom.2020.102811
42. Hashimoto DA, Ward TM, Meireles OR. The role of artificial
intelligence in surgery. Advances in Surgery. 2020;54:89-101.
DOI: https://doi.org/10.1016/j.yasu.2020.05.010
43. Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera
AM, Pucher PH, Navarrete-Welton A, Sankaranarayanan G,
Brunt LM, Okrainec A, Alseidi A. Artificial intelligence for
intraoperative guidance: using semantic segmentation to
identify surgical anatomy during laparoscopic cholecystectomy.
Annals of surgery. 2022;276(2):363-9. DOI: https://doi.org/
10.1097/SLA.0000000000004594
44. Hashimoto DA, Rosman G, Witkowski ER, Stafford C,
Navarette-Welton AJ, Rattner DW, Lillemoe KD, Rus DL,
Meireles OR. Computer vision analysis of intraoperative
video: automated recognition of operative steps in laparoscopic
sleeve gastrectomy. Annals of surgery. 2019;270(3):414-21.
DOI: https://doi.org/10.1097/SLA.0000000000003460
45. Nespolo RG, Yi D, Cole E, Valikodath N, Luciano C,
Leiderman YI. Evaluation of artificial intelligence–based
intraoperative guidance tools for phacoemulsification cataract
surgery. JAMA ophthalmology. 2022;140(2):170-7. DOI:
https://doi.org/10.1001/jamaophthalmol.2021.5742
46. Li A, Javidan AP, Namazi B, Madani A, Forbes TL.
Development of an artificial intelligence tool for intraoperative
guidance during endovascular aneurysm repair. Journal of
Vascular Surgery. 2022;76(4):e114-5. DOI: https://doi.org/
10.1016/j.jvs.2022.07.034
47. Patel RJ, Lee AM, Hallsten J, Lane JS, Barleben AR, Malas
MB. Use of surgical augmented intelligence maps can reduce
radiation and improve safety in the endovascular treatment
of complex aortic aneurysms. Journal of vascular surgery.
2023;77(4):982-90. DOI: https://doi.org/10. 1016/j.jvs.
2022.12.033
48. Ludbrook GL. The hidden pandemic: the cost of postoperative
complications. Current anesthesiology reports. 2022:1-9. DOI:
https://doi.org/10.1007/s40140-021-00493-y
49. Stam WT, Goedknegt LK, Ingwersen EW, Schoonmade LJ,
Bruns ER, Daams F. The prediction of surgical complications
using artificial intelligence in patients undergoing major
abdominal surgery: a systematic review. Surgery.
2022;171(4):1014-21. DOI: https://doi.org/10. 1016/j .surg.
2021.10.002
50. Wen R, Zheng K, Zhang Q, Zhou L, Liu Q, Yu G, Gao X,
Hao L, Lou Z, Zhang W. Machine learning-based random
forest predicts anastomotic leakage after anterior resection
for rectal cancer. Journal of gastrointestinal oncology.
2021;12(3):921. DOI: https://doi.org/10.21037/jgo-20-436
51. Azimi K, Honaker MD, Chalil Madathil S, Khasawneh MT.
Post-operative infection prediction and risk factor analysis in
colorectal surgery using data mining techniques: a pilot study.
Surgical infections. 2020;21(9):784-92. DOI:
52. Chen D, Afzal N, Sohn S, Habermann EB, Naessens JM,
Larson DW, Liu H. Postoperative bleeding risk prediction for
patients undergoing colorectal surgery. Surgery.
2018;164(6):1209-16. DOI: https://doi.org/10.1089/sur.
2019.138
53. Cao Y, Fang X, Ottosson J, Näslund E, Stenberg E. A
comparative study of machine learning algorithms in predicting
severe complications after bariatric surgery. Journal of clinical
medicine. 2019;8(5):668. DOI: https://doi.org/10.3390/
jcm8050668
54. Nudel J, Bishara AM, de Geus SW, Patil P, Srinivasan J,
Hess DT, Woodson J. Development and validation of machine
learning models to predict gastrointestinal leak and venous
thromboembolism after weight loss surgery: an analysis of
the MBSAQIP database. Surgical endoscopy. 2021;35:182-
91. DOI: https://doi.org/10.1007/s00464-020-07378-x
55. Merath K, Hyer JM, Mehta R, Farooq A, Bagante F, Sahara
K, Tsilimigras DI, Beal E, Paredes AZ, Wu L, Ejaz A. Use
of machine learning for prediction of patient risk of
postoperative complications after liver, pancreatic, and
colorectal surgery. Journal of Gastrointestinal Surgery. 2020
;24(8):1843-51. DOI: https://doi.org/10.1007/s11605-019-
04338-2
56. Bian Y, Xiang Y, Tong B, Feng B, Weng X. Artificial
intelligence–assisted system in postoperative follow-up of
orthopedic patients: exploratory quantitative and qualitative
study. Journal of Medical Internet Research. 2020;22(5):
e16896. DOI: https://doi.org/10.2196/16896
57. van de Sande D, van Genderen ME, Verhoef C, Huiskens J,
Gommers D, van Unen E, Schasfoort RA, Schepers J, van
Bommel J, Grünhagen DJ. Optimizing discharge after major
surgery using an artificial intelligence–based decision support
tool (DESIRE): An external validation study. Surgery.
2022;172(2):663-9. DOI: https://doi.org/10.1016/ j.surg.
2022.03.031
58. van der Niet AG, Bleakley A. Where medical education meets
artificial intelligence:‘Does technology care?’. Medical
Education. 2021;55(1):30-6. DOI: https://doi.org/10.1111
/medu.14131
59. Rampton V, Mittelman M, Goldhahn J. Implications of
artificial intelligence for medical education. The Lancet
Digital Health. 2020;2(3):e111-2. DOI: https://doi.org/10.1016
/S2589-7500(20)30023-6
60. Moglia A, Georgiou K, Morelli L, Toutouzas K, Satava RM,
Cuschieri A. Breaking down the silos of artificial intelligence
in surgery: glossary of terms. Surgical Endoscopy.
2022;36(11):7986-97. DOI: https://doi.org/10.1007/s00464-
022-09371-y
61. Inkster B, Sarda S, Subramanian V. An empathy-driven,
conversational artificial intelligence agent (Wysa) for digital
mental well-being: real-world data evaluation mixed-methods
study. JMIR mHealth and uHealth. 2018;6(11):e12106. DOI:
62. Ashrafian H, Clancy O, Grover V, Darzi A. The evolution of
robotic surgery: surgical and anaesthetic aspects. BJA: British
Journal of Anaesthesia. 2017;119(suppl_1):i72-84. DOI:
https://doi.org/10.1093/bja/aex383
63. Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC,
Mohr AM, Rashidi P, Upchurch GR, Bihorac A. Artificial
intelligence and surgical decision-making. JAMA surgery.
2020;155(2):148-58. DOI: https://doi.org/10.1001
/jamasurg.2019.4917
64. Zhao B, Waterman RS, Urman RD, Gabriel RA. A machine
learning approach to predicting case duration for robot-assisted
surgery. Journal of medical systems. 2019;43(2):32. DOI:
https://doi.org/10.1007/s10916-018-1151-y
65. Alip SL, Kim J, Rha KH, Han WK. Future platforms of
robotic surgery. Urologic Clinics. 2022;49(1):23-38. DOI:
https://doi.org/10.1016/j.ucl.2021.07.008
66. Jamjoom AA, Jamjoom AM, Thomas JP, Palmisciano P, Kerr
K, Collins JW, Vayena E, Stoyanov D, Marcus HJ,
iRobotSurgeon Collaboration. Autonomous surgical robotic
systems and the liability dilemma. Frontiers in Surgery. 2022
;9:1015367. 9: p. 1015367. DOI: https://doi.org/10.3389/
fsurg.2022.1015367
67. Egert M, Steward JE, Sundaram CP. Machine learning and
artificial intelligence in surgical fields. Indian journal of
surgical oncology. 2020;11(4):573-7. DOI: https://doi.org/
10.1007/s13193-020-01166-8
68. Li J, Yang X, Chu G, Feng W, Ding X, Yin X, Zhang L, Lv
W, Ma L, Sun L, Feng R. Application of improved robotassisted laparoscopic telesurgery with 5G technology in
urology. European urology. 2023;83(1):41-4. DOI:
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal of Bahria University Medical & Dental College is an open access journal and is licensed under CC BY-NC 4.0. which permits unrestricted non commercial use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0