Tumor Associated Macrophages: Evolutionary Role in Cancer Therapeutics

Authors

  • Fouzia Fazal
  • Muhammad Arsalan Khan
  • Sumayya Shawana
  • Muhammad Mubarak

DOI:

https://doi.org/10.51985/JBUMDC2021109

Keywords:

Cancer, Tumor associated macrophages (TAMs), Tumor microenvironment (TME) and Precision medicine

Abstract

Cancer therapeutics have evolved more significantly during the last two decades with increasing focus on precision medicine.
In principle this involves targeted therapies tailored to patients’ cancer-specific molecular attributes. It includes a repertoire
of immunomodulating, and apoptotic agents added to cytotoxic chemotherapy, to increase effectiveness. Tumor Associated
Macrophages (TAMs) are an interesting potential targets for expanding these therapies. These represent a spectrum of
subtypes with anti-inflammatory M1 and pro-tumor M2 being the predominant among all. A large number of studies have
established their central role in modulating the tumor microenvironment (TME) and contributing to tumor initiation, and
progression. Potential therapeutic strategies that modulate TAMs reduce or block monocyte recruitment, induce apoptosis
of TAMs, re-educate TAMs from pro-tumor M2 to anti-tumor M1, among others. This review takes a detailed look at this
evolving landscape.

References

Mattiuzzi C, Lippi G. Current Cancer Epidemiology. J

Epidemiol Glob Health. 2019;9(4):217-222. doi:10.2991

/jegh.k.191008.001

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics

: GLOBOCAN Estimates of Incidence and Mortality

Worldwide for 36 Cancers in 185 Countries. CA Cancer J

Clin. 2021;71(3):209-249. doi:10.3322/caac.21660

Erickson AW, Ghodrati F, Habbous S, et al. HER2-targeted

therapy prolongs survival in patients with HER2-positive

breast cancer and intracranial metastatic disease: a systematic

review and meta-analysis. Neuro-Oncology Advances.

;2(1)doi:10.1093/noajnl/vdaa136

Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor

metastasis: biological roles and clinical therapeutic applications.

J Hematol Oncol. 2019;12(1):76. doi:10.1186/s13045-019-

-3

Jeong H, Hwang I, Kang SH, Shin HC, Kwon SY. TumorAssociated Macrophages as Potential Prognostic Biomarkers

of Invasive Breast Cancer. J Breast Cancer. Mar 2019;22(1):38-

doi:10.4048/jbc.2019.22.e5

Yang M, Li Z, Ren M, et al. Stromal Infiltration of TumorAssociated Macrophages Conferring Poor Prognosis of Patients

with Basal-Like Breast Carcinoma. J Cancer. 2018;9(13):2308-

doi:10.7150/jca.25155

Hu JM, Liu K, Liu JH, et al. CD163 as a marker of M2

macrophage, contribute to predicte aggressiveness and

prognosis of Kazakh esophageal squamous cell carcinoma.

Oncotarget. 2017;8(13):21526-21538. doi:10.18632/ oncotarget

.15630

Yin S, Huang J, Li Z, et al. The Prognostic and Clinicopathological Significance of Tumor-Associated Macrophages

in Patients with Gastric Cancer: A Meta-Analysis. PLoS One.

;12(1):e0170042. doi:10.1371/journal.pone.0170042

Yang C, Wei C, Wang S, et al. Elevated CD163(+)/CD68(+)

Ratio at Tumor Invasive Front is Closely Associated with

Aggressive Phenotype and Poor Prognosis in Colorectal

Cancer. Int J Biol Sci. 2019;15(5):984-998.

doi:10.7150/ijbs.29836

Krijgsman D, De Vries NL, Andersen MN, et al. CD163 as

a Biomarker in Colorectal Cancer: The Expression on

Circulating Monocytes and Tumor-Associated Macrophages,

and the Soluble Form in the Blood. Int J Mol Sci. 2020;21(16)

doi:10.3390/ijms21165925

Zhao Y, Ge X, Xu X, Yu S, Wang J, Sun L. Prognostic value

and clinicopathological roles of phenotypes of tumourassociated macrophages in colorectal cancer. J Cancer Res

Clin Oncol. 2019;145(12):3005-3019. doi:10.1007/s00432-

-03041-8

Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan N.

Tumour-Associated Macrophages (TAMs) in Colon Cancer

and How to Reeducate Them. J Immunol Res. 2019;2019:

doi:10.1155/2019/2368249

Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The Tumor

Microenvironment: A Milieu Hindering and Obstructing

Antitumor Immune Responses. Front Immunol. 2020;11:940.

doi:10.3389/fimmu.2020.00940

Yuan Y, Jiang Y-C, Sun C-K, Chen Q-M. Role of the tumor

microenvironment in tumor progression and the clinical

applications (Review). Oncol Rep. 2016/05/01 2016;35(5):

-2515. doi:10.3892/or.2016.4660

Wei R, Liu S, Zhang S, Min L, Zhu S. Cellular and Extracellular

Components in Tumor Microenvironment and Their

Application in Early Diagnosis of Cancers. Analytical Cellular

Pathology. 2020/01/08 2020;2020:6283796. doi:10.1155 /2020

/6283796

Arneth B. Tumor Microenvironment. Medicina (Kaunas).

;56(1)doi:10.3390/medicina56010015

Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor

microenvironment complexity and therapeutic implications

at a glance. Cell Communication and Signaling. 2020/04/07

;18(1): 59. doi:10.1186/s12964-020-0530-4

Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumorassociated macrophages: an accomplice in solid tumor

progression. J Biomed Sci. 2019;26(1):78. doi:10.1186/s12929-

-0568-z

Yona S, Gordon S. From the Reticuloendothelial to

Mononuclear Phagocyte System – The Unaccounted Years.

Review. Frontiers in Immunology. 2015-July-01

;6(328)doi:10.3389/fimmu.2015.00328

Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. TumorAssociated Macrophages: Recent Insights and Therapies.

Front Oncol. 2020;10:188. doi:10.3389/fonc.2020.00188

Guttman O, C. Lewis E. M2-like macrophages and tumorassociated macrophages: overlapping and distinguishing

properties en route to a safe therapeutic potential. Integrative

Cancer Science and Therapeutics. 2016;3(5) doi:10. 15761

/icst.1000204

Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang

KC, Ch'ng ES. Evaluating the Polarization of TumorAssociated Macrophages Into M1 and M2 Phenotypes in

Human Cancer Tissue: Technicalities and Challenges in

Routine Clinical Practice. Front Oncol. 2019;9:1512.

doi:10.3389/fonc.2019.01512

Pinto ML, Rios E, Duraes C, et al. The Two Faces of TumorAssociated Macrophages and Their Clinical Significance in

Colorectal Cancer. Front Immunol. 2019;10:1875. doi:10

.3389/fimmu.2019.01875

Xu X, Ye J, Huang C, Yan Y, Li J. M2 macrophage-derived

IL6 mediates resistance of breast cancer cells to hedgehog

inhibition. Toxicol Appl Pharmacol. 2019;364:77-82. doi:10.

/j.taap.2018.12.013

Yin Y, Yao S, Hu Y, et al. The Immune-microenvironment

Confers Chemoresistance of Colorectal Cancer through

Macrophage-Derived IL6. Clinical Cancer Research.

;23(23):7375-7387. doi:10.1158/1078-0432.Ccr-17-1283

Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H. Dual

role of macrophage in tumor immunity. Immunotherapy. Aug

;10(10):899-909. doi:10.2217/imt-2018-0006

Cai J, Xia L, Li J, Ni S, Song H, Wu X. Tumor-Associated

Macrophages Derived TGF-â-Induced Epithelial to

Mesenchymal Transition in Colorectal Cancer Cells through

Smad2,3-4/Snail Signaling Pathway. Cancer Res Treat. Jan

;51(1):252-266. doi:10.4143/crt.2017.613

Yang L, Zhang Y. Tumor-associated macrophages: from basic

research to clinical application. Journal of Hematology &

Oncology. 2017/02/28 2017;10(1):58. doi:10.1186/s13045-

-0430-2

Anfray C, Ummarino A, Andón FT, Allavena P. Current

Strategies to Target Tumor-Associated-Macrophages to

Improve Anti-Tumor Immune Responses. Cells. 2019;9(1)

doi:10.3390/cells9010046

Barkal AA, Weiskopf K, Kao KS, et al. Engagement of MHC

class I by the inhibitory receptor LILRB1 suppresses

macrophages and is a target of cancer immunotherapy. Nat

Immunol.2018;19(1):76-84.doi:10.1038/s41590-017-0004-

z

Sanford DE, Belt BA, Panni RZ, et al. Inflammatory Monocyte

Mobilization Decreases Patient Survival in Pancreatic Cancer:

A Role for Targeting the CCL2/CCR2 Axis. Clinical Cancer

Research. 2013;19(13):3404-3415. doi:10.1158/1078-

Ccr-13-0525

Pienta KJ, Machiels J-P, Schrijvers D, et al. Phase 2 study of

carlumab (CNTO 888), a human monoclonal antibody against

CC-chemokine ligand 2 (CCL2), in metastatic castrationresistant prostate cancer. Investigational New Drugs. 2013/

/01 2013;31(3):760-768. doi:10.1007/s10637-012-9869-8

Brana I, Calles A, LoRusso PM, et al. Carlumab, an anti-CC chemokine ligand 2 monoclonal antibody, in combination

with four chemotherapy regimens for the treatment of patients

with solid tumors: an open-label, multicenter phase 1b study.

Target Oncol. 2015;10(1):111-23. doi:10.1007/s11523-014-

-2

Nywening TM, Wang-Gillam A, Sanford DE, et al. Targeting

tumour-associated macrophages with CCR2 inhibition in

combination with FOLFIRINOX in patients with borderline

resectable and locally advanced pancreatic cancer: a singlecentre, open-label, dose-finding, non-randomised, phase 1b

trial. The Lancet Oncology. 2016;17(5):651-662. doi:10.1016

/s1470-2045(16)00078-4

Halama N, Zoernig I, Berthel A, et al. Tumoral Immune Cell

Exploitation in Colorectal Cancer Metastases Can Be Targeted

Effectively by Anti-CCR5 Therapy in Cancer Patients. Cancer

Cell. 2016;29(4):587-601. doi:10.1016/j.ccell.2016.03.005

Diel IJ, Solomayer EF, Costa SD, et al. Reduction in new

metastases in breast cancer with adjuvant clodronate treatment.

N Engl J Med. 1998;339(6):357-63. doi:10.1056/

nejm199808063390601

Powles T, Paterson S, Kanis JA, et al. Randomized, PlaceboControlled Trial of Clodronate in Patients With Primary

Operable Breast Cancer. Journal of Clinical Oncology. 2002;20

(15):3219-3224. doi:10.1200/jco.2002.11.080

Macherey S, Monsef I, Jahn F, et al. Bisphosphonates for

advanced prostate cancer. Cochrane Database Syst Rev. Dec

2017;12(12):Cd006250. doi:10.1002/ 14651858. CD006

pub2

Junankar S, Shay G, Jurczyluk J, et al. Real-time intravital

imaging establishes tumor-associated macrophages as the

extraskeletal target of bisphosphonate action in cancer. Cancer

Discov. 2015;5(1):35-42. doi:10.1158/2159-8290.Cd-14-0621

Ventriglia J, Paciolla I, Cecere SC, et al. Trabectedin in

Ovarian Cancer: is it now a Standard of Care? Clin Oncol (R

Coll Radiol). Aug 2018;30(8):498-503. doi:10. 1016/j.clon.

01.008

Gordon EM, Sankhala KK, Chawla N, Chawla SP. Trabectedin

for Soft Tissue Sarcoma: Current Status and Future

Perspectives. Adv Ther. 2016;33(7):1055-71. doi:10.1007/

s12325-016-0344-3

Ries CH, Cannarile MA, Hoves S, et al. Targeting tumorassociated macrophages with anti-CSF-1R antibody reveals

a strategy for cancer therapy. Cancer Cell. 2014;25(6):846-

doi:10.1016/j.ccr.2014.05.016

Germano G, Frapolli R, Belgiovine C, et al. Role of macrophage

targeting in the antitumor activity of trabectedin. Cancer Cell.

;23(2):249-62. doi:10.1016/j.ccr.2013.01.008

Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P.

Tumour-associated macrophages as treatment targets in

oncology. Nat Rev Clin Oncol. 2017;14(7):399-416. doi:10.

/nrclinonc.2016.217

Machiels J-P, Gomez-Roca C, Michot J-M, et al. Phase Ib

study of anti-CSF-1R antibody emactuzumab in combination

with CD40 agonist selicrelumab in advanced solid tumor

patients. Journal for ImmunoTherapy of Cancer. 2020;8(2):

e001153. doi:10.1136/jitc-2020-001153

Gomez-Roca CA, Italiano A, Le Tourneau C, et al. Phase I

study of emactuzumab single agent or in combination with

paclitaxel in patients with advanced/metastatic solid tumors

reveals depletion of immunosuppressive M2-like macrophages.

Ann Oncol. 2019;30(8):1381-1392. doi:10.1093/ annonc/

mdz163

van Dalen FJ, van Stevendaal M, Fennemann FL, Verdoes

M, Ilina O. Molecular Repolarisation of Tumour-Associated

Macrophages. Molecules. 2018;24(1)doi: 10.3390/

molecules24010009

Giuseppina Comito1 CPS, Maria Letizia Taddei1, Michele

Lanciotti3 Sergio Serni3, AM, Paola Chiarugi1,2 , Elisa

Giannoni1. Zoledronic acid impairs stromal reactivity by

inhibiting M2-macrophages polarization and prostate cancerassociated fibroblasts. Oncotarget, 2017, Vol 8, (No 1), pp:

-132. 2016;

Gnant M, Mlineritsch B, Stoeger H, et al. Adjuvant endocrine

therapy plus zoledronic acid in premenopausal women with

early-stage breast cancer: 62-month follow-up from the

ABCSG-12 randomised trial. The Lancet Oncology.

;12(7):631-641. doi:10.1016/s1470-2045(11)70122-x

Yan D, Kowal J, Akkari L, et al. Inhibition of colony

stimulating factor-1 receptor abrogates microenvironmentmediated therapeutic resistance in gliomas. Oncogene. 2017;

(43):6049-6058. doi:10.1038/onc.2017.261

Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade

reprograms tumor-infiltrating macrophages and improves

response to T-cell checkpoint immunotherapy in pancreatic

cancer models. Cancer Res. 2014;74(18):5057-69. doi:10.

/0008-5472.Can-13-3723

Liguori M. BC, Pasqualini F., Bergomas F., Pesce S., Sironi

M., Grizzi F., Mantovani A., Belgiovine C., Allavena P.

Functional TRAIL receptors in monocytes and tumorassociated macrophages: . Functional TRAIL receptors in

monocytes and tumor-associated macrophages: A possible

targeting pathway in the tumor microenvironment. Oncotarget.

; 7: 41662-41676.

Advani R, Flinn I, Popplewell L, et al. CD47 Blockade by

Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. N

Engl J Med. 2018;379(18):1711-1721. doi:10.1056/ NEJMoa

Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression

by tumour-associated macrophages inhibits phagocytosis and

tumour immunity. Nature. 2017;545(7655):495-499.

doi:10.1038/nature22396

Downloads

Published

2022-07-04

How to Cite

Fazal, F. ., Khan, M. A. ., Shawana, S. ., & Mubarak, M. . (2022). Tumor Associated Macrophages: Evolutionary Role in Cancer Therapeutics. Journal of Bahria University Medical and Dental College, 12(03), 162–168. https://doi.org/10.51985/JBUMDC2021109

Issue

Section

Review Article