Limitations of Artificial Intelligence in Orthodontics. Literature Review
DOI:
https://doi.org/10.51985/JBUMDC2024452Keywords:
Artificial Intelligence, Hazards, Machine learning, Orthodontics.Abstract
In the 21st century, advances in computer technology and data science have brought significant innovation to orthodontics, especially through Artificial Intelligence (AI) and Machine Learning (ML). This study, conducted from July 2 to August 15, 2024, in the Orthodontic Department at Rawal Institute of Health Sciences Islamabad, reviews AI’s transformative role in dentistry, focusing on its applications, benefits, and challenges. A comprehensive literature search across PubMed and Google Scholar yielded 260 peer-reviewed articles from 2001 to 2024. After applying stringent selection criteria, the review focused on AI's historical development, applications, and limitations in orthodontics. While AI enhances diagnostic imaging and patient care, it cannot replace clinical expertise. Key challenges include patient privacy, data security, and ethical considerations. AI systems rely heavily on high-quality data, necessitating rigorous training. Therefore, AI should be viewed as an adjunct in orthodontics, providing a “second opinion” to support clinical decisions.
References
1. M‘hamed J, Dallel I, Tobji S, Ben Amor A. The Impact of
Artificial Intelligence on Contemporary Orthodontic Treatment
Planning - A Systematic Review and Meta-Analysis. Sch J
Dent Sci. 2022 ;(5): 70-87. Doi:10.36347/sjds. 2022.v09i05
.001.
2. Agrawal P, Nikhade P. Artificial Intelligence in Dentistry:
Past, Present, and Future. Cureus. 2022 ;14(7):e27405. doi:
10.7759/cureus.27405.
3. Nayak S ,Patgiri R, Doren Singh T. Big Computing: Where
are we heading? TD.EAI Endorsed Transactions on Scalable
Information Systems.2020;7(27):e9. https://doi.org/10.
4108/eai.13-7-2018.163972.
4. Ng Kam. (2024). Big Data: Understanding and Implementation
in the Data-Driven Era. https://www.researchgate. net/
publication/377359928.
5. Soori M, Arezoo B,Dastres R.Artificial intelligence, machine
learning and deep learning in advanced robotics, a
review.Cognitive Robotics.2023;3:54-70.https://doi.org/
10.1016/j.cogr.2023.04.001.
6. Fatima A, Shafi I, Afzal H, Díez IT, Lourdes DRM, Breñosa
J, Espinosa JCM, Ashraf I. Advancements in Dentistry with
Artificial Intelligence: Current Clinical Applications and
Future Perspectives. Healthcare (Basel). 2022;10(11):2188.
doi: 10.3390/healthcare10112188.
7. Nordblom NF, Büttner M, Schwendicke F. Artificial
Intelligence in Orthodontics: Critical Review. J Dent Res.
2024;103(6):577-84. doi: 10.1177/00220345241235606.
8. Bhardwaj A, Kishore S, Pandey DK. Artificial Intelligence
in Biological Sciences. Life (Basel). 2022;12(9):1430. doi:
10.3390/life12091430
9. Arbelaez Ossa L, Lorenzini G, Milford SR, Shaw D, Elger
BS, Rost M. Integrating ethics in AI development: a qualitative
study. BMC Med Ethics. 2024 Jan 23;25(1):10. doi: 10.1186/
s12910-023-01000-0.
10. Huang YK, Hsu LP, Chang YC. Artificial intelligence in
clinical dentistry: The potentially negative impacts and future
actions. J Dent Sci. 2022;17(4):1817-1818. doi: 10.1016/
j.jds.2022.07.013.
11. Retrouvey JM. The role of AI and machine learning in
contemporary orthodontics. APOS Trends Orthod.
2021;11(1):74-80. DOI:10.25259/APOS_148_2020.
12. Khalid N, Qayyum A, Bilal M, Al-Fuqaha A, Qadir J.Privacypreserving artificial intelligence in healthcare: Techniques
and applications,Computers in Biology andMedicine.
2023;158:106848.
13. Yu HC, Chen TP, Chang YC. Inflammatory bowel disease as
a risk factor for periodontitis under Taiwanese National Health
Insurance Research database. J Dent Sci. 2018;13(3):242-47.
doi: 10.1016/j.jds.2018.03.004.
14. Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P,
No¿ewski J, Janiszewska-Olszowska J. AI in Orthodontics:
Revolutionizing Diagnostics and Treatment Planning-A
Comprehensive Review. J Clin Med. 2024 ;13(2):344. doi:
10.3390/jcm13020344.
15. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM.
The use and performance of artificial intelligence applications
in dental and maxillofacial radiology: A systematic review.
Dentomaxillofac Radiol. 2020 ;49(1):20190107. doi: 10.1259
/dmfr.20190107.
16. Aldoseri A, Al-Khalifa KN, Hamouda AM. Re-Thinking Data
Strategy and Integration for Artificial Intelligence: Concepts,
Opportunities, and Challenges. Applied Sciences. 2023;
13(12):7082. https://doi.org/10.3390/app13127082
17. Baelum V, Borchorst E, Buch H, Dømgaard P, Hartig LE.
Inter-examiner variability in orthodontic treatment decisions
for Danish children with 'borderline' treatment need. Eur J
Orthod. 2012 ;34(2):250-6. doi: 10.1093/ejo/cjq195.
18. Larson DB, Harvey H, Rubin DL, Irani N, Tse JR, Langlotz
CP. Regulatory Frameworks for Development and Evaluation
of Artificial Intelligence-Based Diagnostic Imaging Algorithms:
Summary and Recommendations. J Am Coll Radiol. 2021
Mar;18(3 Pt A):413-424. doi: 10.1016/j.jacr.2020.09.060.
19. Ben-Hamadou A, Smaoui O, Rekik A, Pujades S, Boyer E,
Lim H, Kim M, Lee M, Chung M, Shin Y-G, et al. 2023.
3DTeethSeg’22: 3D teeth scan segmentation and labeling
challenge [accessed 2023 Jul 26]. doi:10.48550/ arXiv.2305.
18277.
20. Amasya H, Cesur E, Yýldýrým D, Orhan K. Validation of
cervical vertebral maturation stages: Artificial intelligence vs
human observer visual analysis. Am J Orthod Dentofacial
Orthop. 2020;158(6):e173-e179. doi: 10.1016/j.ajodo. 2020.
08.014.
21. Kök H, Acilar AM, Ýzgi MS. Usage and comparison of
artificial intelligence algorithms for determination of growth
and development by cervical vertebrae stages in orthodontics.
Prog Orthod. 2019 ;20(1):41. doi:10.1186/s40510-019-0295-
8.
22. Shahidi S, Oshagh M, Gozin F, Salehi P, Danaei SM. Accuracy
of computerized automatic identifcation of cephalometric
landmarks by a designed software. Dentomaxillofac Radiol.
2013;42:20110187. https://doi.org/10. 1259/dmfr.20110187.
23. Forsyth DB, Shaw WC, Richmond S, Roberts CT. Digital
imaging of cephalometric radiographs, Part 2: Image quality.
Angle Orthod. 1996;66(1):43-50. doi: 10.1043/0003-
3219(1996)066<0043:DIOCRP>2.3.CO;2.
24. Patel KS, Kulkarni N, Singh VP, Parikh K. Identifcation of
an alternate maxillary apical base landmark from pre-existing
substitutions. Acta Inform Med. 2014;22:347–9. https://doi.org/
10.5455/aim.2014.22.347-349.
25. Oh K, Oh IS, Le VNT, Lee DW. Deep anatomical context
feature learning for cephalometric landmark detection. IEEE
J Biomed Health Inform.2021;25:806–17. https://doi.org/
10.1109/JBHI.2020.3002582.
25. Ye, H., Cheng, Z., Ungvijanpunya, N. et al. Is automatic
cephalometric software using artificial intelligence better than
orthodontist experts in landmark identification?. BMC Oral
Health. 2023; 23 : 467. https://doi.org/10.1186/s12903-023-
03188-4.
27. Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ,
Lai TM, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P,
Cootes TF, Lindner C. A benchmark for comparison of dental
radiography analysis algorithms. Med Image Anal.
2016;31:63–76. https://doi.org/10.1016/j.media.2016.02.004.
28. Ploder O, Kohnke R, Winsauer H, Gotz C, Bissinger O, Haller
B, Kolk A. Skeletal-versus soft-tissue-based cephalometric
analyses: Is the correlation reproducible? Acta Odontol Scand.
2019;77:135–41. https://doi.org/ 10.1080/00016357. 2018.
1515443.
29. Al-Ani MH, Mageet AO. Extraction Planning in Orthodontics.
J Contemp Dent Pract. 2018 May 1;19(5):619-23. PMID:
29807975.
30. Real AD, Real OD, Sardina S, Oyonarte R. Use of automated
artificial intelligence to predict the need for orthodontic
extractions. Korean J Orthod. 2022 ;52(2):102-111. doi:
10.4041/kjod.2022.52.2.102.
31. Evrard A, Tepedino M, Cattaneo PM, Cornelis MA. Which
factors influence orthodontists in their decision to extract? A
questionnaire survey. J Clin Exp Dent. 2019 ;11(5):e432-
e438. doi: 10.4317/jced.55709.
32. Chambers DW, Thakkar D. Consistency of orthodontists'
clinical decisions: A systematic review, meta-analysis, and
theory development. Am J Orthod Dentofacial Orthop. 2022
;161(4):497-509.e4. doi: 10.1016/j.ajodo.2021.05.009.
33. Evangelista K, de Freitas Silva BS, Yamamoto-Silva FP,
Valladares-Neto J, Silva MAG, Cevidanes LHS, de Luca
Canto G, Massignan C. Accuracy of artificial intelligence for
tooth extraction decision-making in orthodontics: a systematic
review and meta-analysis. Clin Oral Investig.
2022;26(12):6893-6905. doi: 10.1007/s00784-022-04742-0.
34. Liu J, Chen Y, Li S, Zhao Z, Wu Z. Machine learning in
orthodontics: Challenges and perspectives. Adv Clin Exp
Med. 2021;30(10):1065-74. doi: 10.17219/acem/138702.
35. Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH,
Kim TW. Artificial Intelligent Model With Neural Network
Machine Learning for the Diagnosis of Orthognathic Surgery.
J Craniofac Surg. 2019;30(7):1986-1989. doi: 10.1097/SCS
.0000000000005650. Erratum in: J Craniofac Surg.
2020;31(4):1156. doi: 10.1097/SCS.0000000000006531.
36. Xie X, Wang L, Wang A. Artificial neural network modeling
for deciding if extractions are necessary prior to orthodontic
treatment. Angle Orthod. 2010 ;80(2):262-6. doi: 10.2319/
111608-588.1.
37. Jung SK, Kim TW. New approach for the diagnosis of
extractions with neural network machine learning. Am J
Orthod Dentofacial Orthop. 2016;149(1):127-33. doi:
10.1016/j.ajodo.2015.07.030.
38. Semerci ZM, Yardýmcý S. Empowering Modern Dentistry:
The Impact of Artificial Intelligence on Patient Care and
Clinical Decision Making. Diagnostics (Basel). 2024 Jun
14;14(12):1260. doi: 10.3390/diagnostics14121260.
39. Carey CW. Linear arch dimension and tooth size; an evaluation
of the bone and dental structures in cases involving the possible
reduction of dental units in treatment. Am J Orthod. 1949
;35(10):762-75. doi: 10.1016/0002-9416(49)90148-7.
40. Saghafi N, Heaton LJ, Bayirli B, Turpin DL, Khosravi R,
Bollen AM. Influence of clinicians' experience and gender
on extraction decision in orthodontics. Angle Orthod. 2017
;87(5):641-50. doi: 10.2319/020117-80.1.
41. Chikankar T, Kaiser J, Gupta K, Kamble R. Non-extraction
Approach in a Borderline Case of a Growing Patient: A Case
Report. Cureus. 2024 Jun 11;16(6):e62195. doi:
10.7759/cureus.62195.
42. Rauf AM, Mahmood TMA, Mohammed MH, Omer ZQ,
Kareem FA. Orthodontic Implementation of Machine Learning
Algorithms for Predicting Some Linear Dental Arch
Measurements and Preventing Anterior Segment Malocclusion:
A Prospective Study. Medicina (Kaunas). 2023 Nov
9;59(11):1973. doi: 10.3390/medicina59111973.
43. Arsiwala-Scheppach LT, Chaurasia A, Müller A, Krois J,
Schwendicke F. Machine Learning in Dentistry: A Scoping
Review. J Clin Med. 2023 Jan 25;12(3):937. doi: 10.3390/
jcm12030937.
44. Felzmann H, Fosch-Villaronga E, Lutz C, Tamò-Larrieux A.
Towards Transparency by Design for Artificial Intelligence.
Sci Eng Ethics. 2020 ;26(6):3333-3361. doi: 10.1007/s11948-
020-00276-4.
45. Daneshjou R, Smith MP, Sun MD, Rotemberg V, Zou J. Lack
of Transparency and Potential Bias in Artificial Intelligence
Data Sets and Algorithms: A Scoping Review. JAMA Dermatol.
2021 ;157(11):1362-1369. doi: 10.1001/ jamadermatol. 2021.
3129.
46. Haibe-Kains B, Adam GA, Hosny A, Khodakarami F; Massive
Analysis Quality Control (MAQC) Society Board of Directors;
Waldron L, Wang B, McIntosh C, Goldenberg A, Kundaje A,
Greene CS, Broderick T, Hoffman MM, Leek JT, Korthauer
K, Huber W, Brazma A, Pineau J, Tibshirani R, Hastie T,
Ioannidis JPA, Quackenbush J, Aerts HJWL. Transparency
and reproducibility in artificial intelligence. Nature. 2020
;586(7829):E14-E16. doi: 10.1038/s41586-020-2766-y.
47. Sharma, Anju & Kaur, Ginpreet & Tuli, Hardeep Singh &
Chhabra, Raunak & Rana, Rashmi. (2024). Advent of artificial
intelligence in orthognathic surgery: Advancements and
challenges. Scripta Medica.2024;55:231-43. 10.5937/
scriptamed55-46960.
48. Knoops PGM, Papaioannou A, Borghi A, Breakey RWF,
Wilson AT, Jeelani O, Zafeiriou S, Steinbacher D, Padwa BL,
Dunaway DJ, Schievano S. A machine learning framework
for automated diagnosis and computer-assisted planning in
plastic and reconstructive surgery. Sci Rep. 2019;9(1):13597.
doi: 10.1038/s41598-019-49506-1.
49. Chung M, Lee J, Song W, Song Y, Yang IH, Lee J, Shin YG.
Automatic Registration Between Dental Cone-Beam CT and
Scanned Surface via Deep Pose Regression Neural Networks
and Clustered Similarities. IEEE Trans Med Imaging. 2020
;39(12):3900-3909. doi: 10.1109/TMI.2020.3007520.
50. Salazar D, Rossouw PE, Javed F, Michelogiannakis D.
Artificial intelligence for treatment planning and soft tissue
outcome prediction of orthognathic treatment: A systematic
review. J Orthod. 2024;51(2):107-19. doi: 10.1177/1465312523
1203743.
51. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul
R, Aggarwal K, Ibrahim S, Patil V, Smriti K, Shetty S, Rai
BP, Chlosta P, Somani BK. Legal and Ethical Consideration
in Artificial Intelligence in Healthcare: Who Takes
Responsibility? Front Surg. 2022;9:862322. doi: 10.3389/
fsurg.2022.862322.
52. Arnold MH. Teasing out Artificial Intelligence in Medicine:
An Ethical Critique of Artificial Intelligence and Machine
Learning in Medicine. J Bioeth Inq. 2021;18(1):121-139. doi:
10.1007/s11673-020-10080-1.
53. Chen N, Li Z, Tang B. Can digital skill protect against job
displacement risk caused by artificial intelligence? Empirical
evidence from 701 detailed occupations. PLoS One. 2022
;17(11):e0277280. doi: 10.1371/journal.pone.0277280.
54. Nordblom NF, Büttner M, Schwendicke F. Artificial
Intelligence in Orthodontics: Critical Review. J Dent Res.
2024;103(6):577-584. doi: 10.1177/00220345241235606.
55. Pianykh OS, Langs G, Dewey M, Enzmann DR, Herold CJ,
Schoenberg SO, Brink JA. Continuous Learning AI in
Radiology: Implementation Principles and Early Applications.
Radiology. 2020 ;297(1):6-14. doi: 10.1148/radiol.2020200038.
56. Peters U. Algorithmic Political Bias in Artificial Intelligence
Systems. Philos Technol. 2022;35(2):25. doi: 10.1007/s13347-
022-00512-8.
57. Ostherr K. Artificial Intelligence and Medical Humanities. J
Med Humanit. 2022 ;43(2):211-232. doi: 10.1007/s10912-
020-09636-4.
58. Haibe-Kains B, Adam GA, Hosny A, Khodakarami F; Massive
Analysis Quality Control (MAQC) Society Board of Directors;
Waldron L, Wang B, McIntosh C, Goldenberg A, Kundaje A,
Greene CS, Broderick T, Hoffman MM, Leek JT, Korthauer
K, Huber W, Brazma A, Pineau J, Tibshirani R, Hastie T,
Ioannidis JPA, Quackenbush J, Aerts HJWL. Transparency
and reproducibility in artificial intelligence. Nature.
2020;586(7829):E14-E16. doi: 10.1038/s41586-020-2766-y.
59. Wadhwa V, Alagappan M, Gonzalez A, Gupta K, Brown JRG,
Cohen J, Sawhney M, Pleskow D, Berzin TM. Physician
sentiment toward artificial intelligence (AI) in colonoscopic
practice: a survey of US gastroenterologists. Endosc Int Open.
2020 ;8(10):E1379-E1384. doi: 10.1055/a-1223-1926.
60. Zhou C, Pan S, Zhou T, editors. Design and implementation
of software simulation system for dental orthodontic robot
In: IOP Conference Series: Materials Science and Engineering.
Bristol: IOP Publishing; 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sadia Naureen

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal of Bahria University Medical & Dental College is an open access journal and is licensed under CC BY-NC 4.0. which permits unrestricted non commercial use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0
Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/u735751794/domains/bahria.edu.pk/public_html/ojs_jbumdc/plugins/generic/citations/CitationsPlugin.inc.php on line 49