Limitations of Artificial Intelligence in Orthodontics. Literature Review

Authors

  • Sadia Naureen

DOI:

https://doi.org/10.51985/JBUMDC2024452

Keywords:

Artificial Intelligence, Hazards, Machine learning, Orthodontics.

Abstract

In the 21st century, advances in computer technology and data science have brought significant innovation to orthodontics, especially through Artificial Intelligence (AI) and Machine Learning (ML). This study, conducted from July 2 to August 15, 2024, in the Orthodontic Department at Rawal Institute of Health Sciences Islamabad, reviews AI’s transformative role in dentistry, focusing on its applications, benefits, and challenges. A comprehensive literature search across PubMed and Google Scholar yielded 260 peer-reviewed articles from 2001 to 2024. After applying stringent selection criteria, the review focused on AI's historical development, applications, and limitations in orthodontics. While AI enhances diagnostic imaging and patient care, it cannot replace clinical expertise. Key challenges include patient privacy, data security, and ethical considerations. AI systems rely heavily on high-quality data, necessitating rigorous training. Therefore, AI should be viewed as an adjunct in orthodontics, providing a “second opinion” to support clinical decisions.

References

1. M‘hamed J, Dallel I, Tobji S, Ben Amor A. The Impact of

Artificial Intelligence on Contemporary Orthodontic Treatment

Planning - A Systematic Review and Meta-Analysis. Sch J

Dent Sci. 2022 ;(5): 70-87. Doi:10.36347/sjds. 2022.v09i05

.001.

2. Agrawal P, Nikhade P. Artificial Intelligence in Dentistry:

Past, Present, and Future. Cureus. 2022 ;14(7):e27405. doi:

10.7759/cureus.27405.

3. Nayak S ,Patgiri R, Doren Singh T. Big Computing: Where

are we heading? TD.EAI Endorsed Transactions on Scalable

Information Systems.2020;7(27):e9. https://doi.org/10.

4108/eai.13-7-2018.163972.

4. Ng Kam. (2024). Big Data: Understanding and Implementation

in the Data-Driven Era. https://www.researchgate. net/

publication/377359928.

5. Soori M, Arezoo B,Dastres R.Artificial intelligence, machine

learning and deep learning in advanced robotics, a

review.Cognitive Robotics.2023;3:54-70.https://doi.org/

10.1016/j.cogr.2023.04.001.

6. Fatima A, Shafi I, Afzal H, Díez IT, Lourdes DRM, Breñosa

J, Espinosa JCM, Ashraf I. Advancements in Dentistry with

Artificial Intelligence: Current Clinical Applications and

Future Perspectives. Healthcare (Basel). 2022;10(11):2188.

doi: 10.3390/healthcare10112188.

7. Nordblom NF, Büttner M, Schwendicke F. Artificial

Intelligence in Orthodontics: Critical Review. J Dent Res.

2024;103(6):577-84. doi: 10.1177/00220345241235606.

8. Bhardwaj A, Kishore S, Pandey DK. Artificial Intelligence

in Biological Sciences. Life (Basel). 2022;12(9):1430. doi:

10.3390/life12091430

9. Arbelaez Ossa L, Lorenzini G, Milford SR, Shaw D, Elger

BS, Rost M. Integrating ethics in AI development: a qualitative

study. BMC Med Ethics. 2024 Jan 23;25(1):10. doi: 10.1186/

s12910-023-01000-0.

10. Huang YK, Hsu LP, Chang YC. Artificial intelligence in

clinical dentistry: The potentially negative impacts and future

actions. J Dent Sci. 2022;17(4):1817-1818. doi: 10.1016/

j.jds.2022.07.013.

11. Retrouvey JM. The role of AI and machine learning in

contemporary orthodontics. APOS Trends Orthod.

2021;11(1):74-80. DOI:10.25259/APOS_148_2020.

12. Khalid N, Qayyum A, Bilal M, Al-Fuqaha A, Qadir J.Privacypreserving artificial intelligence in healthcare: Techniques

and applications,Computers in Biology andMedicine.

2023;158:106848.

13. Yu HC, Chen TP, Chang YC. Inflammatory bowel disease as

a risk factor for periodontitis under Taiwanese National Health

Insurance Research database. J Dent Sci. 2018;13(3):242-47.

doi: 10.1016/j.jds.2018.03.004.

14. Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P,

No¿ewski J, Janiszewska-Olszowska J. AI in Orthodontics:

Revolutionizing Diagnostics and Treatment Planning-A

Comprehensive Review. J Clin Med. 2024 ;13(2):344. doi:

10.3390/jcm13020344.

15. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM.

The use and performance of artificial intelligence applications

in dental and maxillofacial radiology: A systematic review.

Dentomaxillofac Radiol. 2020 ;49(1):20190107. doi: 10.1259

/dmfr.20190107.

16. Aldoseri A, Al-Khalifa KN, Hamouda AM. Re-Thinking Data

Strategy and Integration for Artificial Intelligence: Concepts,

Opportunities, and Challenges. Applied Sciences. 2023;

13(12):7082. https://doi.org/10.3390/app13127082

17. Baelum V, Borchorst E, Buch H, Dømgaard P, Hartig LE.

Inter-examiner variability in orthodontic treatment decisions

for Danish children with 'borderline' treatment need. Eur J

Orthod. 2012 ;34(2):250-6. doi: 10.1093/ejo/cjq195.

18. Larson DB, Harvey H, Rubin DL, Irani N, Tse JR, Langlotz

CP. Regulatory Frameworks for Development and Evaluation

of Artificial Intelligence-Based Diagnostic Imaging Algorithms:

Summary and Recommendations. J Am Coll Radiol. 2021

Mar;18(3 Pt A):413-424. doi: 10.1016/j.jacr.2020.09.060.

19. Ben-Hamadou A, Smaoui O, Rekik A, Pujades S, Boyer E,

Lim H, Kim M, Lee M, Chung M, Shin Y-G, et al. 2023.

3DTeethSeg’22: 3D teeth scan segmentation and labeling

challenge [accessed 2023 Jul 26]. doi:10.48550/ arXiv.2305.

18277.

20. Amasya H, Cesur E, Yýldýrým D, Orhan K. Validation of

cervical vertebral maturation stages: Artificial intelligence vs

human observer visual analysis. Am J Orthod Dentofacial

Orthop. 2020;158(6):e173-e179. doi: 10.1016/j.ajodo. 2020.

08.014.

21. Kök H, Acilar AM, Ýzgi MS. Usage and comparison of

artificial intelligence algorithms for determination of growth

and development by cervical vertebrae stages in orthodontics.

Prog Orthod. 2019 ;20(1):41. doi:10.1186/s40510-019-0295-

8.

22. Shahidi S, Oshagh M, Gozin F, Salehi P, Danaei SM. Accuracy

of computerized automatic identifcation of cephalometric

landmarks by a designed software. Dentomaxillofac Radiol.

2013;42:20110187. https://doi.org/10. 1259/dmfr.20110187.

23. Forsyth DB, Shaw WC, Richmond S, Roberts CT. Digital

imaging of cephalometric radiographs, Part 2: Image quality.

Angle Orthod. 1996;66(1):43-50. doi: 10.1043/0003-

3219(1996)066<0043:DIOCRP>2.3.CO;2.

24. Patel KS, Kulkarni N, Singh VP, Parikh K. Identifcation of

an alternate maxillary apical base landmark from pre-existing

substitutions. Acta Inform Med. 2014;22:347–9. https://doi.org/

10.5455/aim.2014.22.347-349.

25. Oh K, Oh IS, Le VNT, Lee DW. Deep anatomical context

feature learning for cephalometric landmark detection. IEEE

J Biomed Health Inform.2021;25:806–17. https://doi.org/

10.1109/JBHI.2020.3002582.

25. Ye, H., Cheng, Z., Ungvijanpunya, N. et al. Is automatic

cephalometric software using artificial intelligence better than

orthodontist experts in landmark identification?. BMC Oral

Health. 2023; 23 : 467. https://doi.org/10.1186/s12903-023-

03188-4.

27. Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ,

Lai TM, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P,

Cootes TF, Lindner C. A benchmark for comparison of dental

radiography analysis algorithms. Med Image Anal.

2016;31:63–76. https://doi.org/10.1016/j.media.2016.02.004.

28. Ploder O, Kohnke R, Winsauer H, Gotz C, Bissinger O, Haller

B, Kolk A. Skeletal-versus soft-tissue-based cephalometric

analyses: Is the correlation reproducible? Acta Odontol Scand.

2019;77:135–41. https://doi.org/ 10.1080/00016357. 2018.

1515443.

29. Al-Ani MH, Mageet AO. Extraction Planning in Orthodontics.

J Contemp Dent Pract. 2018 May 1;19(5):619-23. PMID:

29807975.

30. Real AD, Real OD, Sardina S, Oyonarte R. Use of automated

artificial intelligence to predict the need for orthodontic

extractions. Korean J Orthod. 2022 ;52(2):102-111. doi:

10.4041/kjod.2022.52.2.102.

31. Evrard A, Tepedino M, Cattaneo PM, Cornelis MA. Which

factors influence orthodontists in their decision to extract? A

questionnaire survey. J Clin Exp Dent. 2019 ;11(5):e432-

e438. doi: 10.4317/jced.55709.

32. Chambers DW, Thakkar D. Consistency of orthodontists'

clinical decisions: A systematic review, meta-analysis, and

theory development. Am J Orthod Dentofacial Orthop. 2022

;161(4):497-509.e4. doi: 10.1016/j.ajodo.2021.05.009.

33. Evangelista K, de Freitas Silva BS, Yamamoto-Silva FP,

Valladares-Neto J, Silva MAG, Cevidanes LHS, de Luca

Canto G, Massignan C. Accuracy of artificial intelligence for

tooth extraction decision-making in orthodontics: a systematic

review and meta-analysis. Clin Oral Investig.

2022;26(12):6893-6905. doi: 10.1007/s00784-022-04742-0.

34. Liu J, Chen Y, Li S, Zhao Z, Wu Z. Machine learning in

orthodontics: Challenges and perspectives. Adv Clin Exp

Med. 2021;30(10):1065-74. doi: 10.17219/acem/138702.

35. Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH,

Kim TW. Artificial Intelligent Model With Neural Network

Machine Learning for the Diagnosis of Orthognathic Surgery.

J Craniofac Surg. 2019;30(7):1986-1989. doi: 10.1097/SCS

.0000000000005650. Erratum in: J Craniofac Surg.

2020;31(4):1156. doi: 10.1097/SCS.0000000000006531.

36. Xie X, Wang L, Wang A. Artificial neural network modeling

for deciding if extractions are necessary prior to orthodontic

treatment. Angle Orthod. 2010 ;80(2):262-6. doi: 10.2319/

111608-588.1.

37. Jung SK, Kim TW. New approach for the diagnosis of

extractions with neural network machine learning. Am J

Orthod Dentofacial Orthop. 2016;149(1):127-33. doi:

10.1016/j.ajodo.2015.07.030.

38. Semerci ZM, Yardýmcý S. Empowering Modern Dentistry:

The Impact of Artificial Intelligence on Patient Care and

Clinical Decision Making. Diagnostics (Basel). 2024 Jun

14;14(12):1260. doi: 10.3390/diagnostics14121260.

39. Carey CW. Linear arch dimension and tooth size; an evaluation

of the bone and dental structures in cases involving the possible

reduction of dental units in treatment. Am J Orthod. 1949

;35(10):762-75. doi: 10.1016/0002-9416(49)90148-7.

40. Saghafi N, Heaton LJ, Bayirli B, Turpin DL, Khosravi R,

Bollen AM. Influence of clinicians' experience and gender

on extraction decision in orthodontics. Angle Orthod. 2017

;87(5):641-50. doi: 10.2319/020117-80.1.

41. Chikankar T, Kaiser J, Gupta K, Kamble R. Non-extraction

Approach in a Borderline Case of a Growing Patient: A Case

Report. Cureus. 2024 Jun 11;16(6):e62195. doi:

10.7759/cureus.62195.

42. Rauf AM, Mahmood TMA, Mohammed MH, Omer ZQ,

Kareem FA. Orthodontic Implementation of Machine Learning

Algorithms for Predicting Some Linear Dental Arch

Measurements and Preventing Anterior Segment Malocclusion:

A Prospective Study. Medicina (Kaunas). 2023 Nov

9;59(11):1973. doi: 10.3390/medicina59111973.

43. Arsiwala-Scheppach LT, Chaurasia A, Müller A, Krois J,

Schwendicke F. Machine Learning in Dentistry: A Scoping

Review. J Clin Med. 2023 Jan 25;12(3):937. doi: 10.3390/

jcm12030937.

44. Felzmann H, Fosch-Villaronga E, Lutz C, Tamò-Larrieux A.

Towards Transparency by Design for Artificial Intelligence.

Sci Eng Ethics. 2020 ;26(6):3333-3361. doi: 10.1007/s11948-

020-00276-4.

45. Daneshjou R, Smith MP, Sun MD, Rotemberg V, Zou J. Lack

of Transparency and Potential Bias in Artificial Intelligence

Data Sets and Algorithms: A Scoping Review. JAMA Dermatol.

2021 ;157(11):1362-1369. doi: 10.1001/ jamadermatol. 2021.

3129.

46. Haibe-Kains B, Adam GA, Hosny A, Khodakarami F; Massive

Analysis Quality Control (MAQC) Society Board of Directors;

Waldron L, Wang B, McIntosh C, Goldenberg A, Kundaje A,

Greene CS, Broderick T, Hoffman MM, Leek JT, Korthauer

K, Huber W, Brazma A, Pineau J, Tibshirani R, Hastie T,

Ioannidis JPA, Quackenbush J, Aerts HJWL. Transparency

and reproducibility in artificial intelligence. Nature. 2020

;586(7829):E14-E16. doi: 10.1038/s41586-020-2766-y.

47. Sharma, Anju & Kaur, Ginpreet & Tuli, Hardeep Singh &

Chhabra, Raunak & Rana, Rashmi. (2024). Advent of artificial

intelligence in orthognathic surgery: Advancements and

challenges. Scripta Medica.2024;55:231-43. 10.5937/

scriptamed55-46960.

48. Knoops PGM, Papaioannou A, Borghi A, Breakey RWF,

Wilson AT, Jeelani O, Zafeiriou S, Steinbacher D, Padwa BL,

Dunaway DJ, Schievano S. A machine learning framework

for automated diagnosis and computer-assisted planning in

plastic and reconstructive surgery. Sci Rep. 2019;9(1):13597.

doi: 10.1038/s41598-019-49506-1.

49. Chung M, Lee J, Song W, Song Y, Yang IH, Lee J, Shin YG.

Automatic Registration Between Dental Cone-Beam CT and

Scanned Surface via Deep Pose Regression Neural Networks

and Clustered Similarities. IEEE Trans Med Imaging. 2020

;39(12):3900-3909. doi: 10.1109/TMI.2020.3007520.

50. Salazar D, Rossouw PE, Javed F, Michelogiannakis D.

Artificial intelligence for treatment planning and soft tissue

outcome prediction of orthognathic treatment: A systematic

review. J Orthod. 2024;51(2):107-19. doi: 10.1177/1465312523

1203743.

51. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul

R, Aggarwal K, Ibrahim S, Patil V, Smriti K, Shetty S, Rai

BP, Chlosta P, Somani BK. Legal and Ethical Consideration

in Artificial Intelligence in Healthcare: Who Takes

Responsibility? Front Surg. 2022;9:862322. doi: 10.3389/

fsurg.2022.862322.

52. Arnold MH. Teasing out Artificial Intelligence in Medicine:

An Ethical Critique of Artificial Intelligence and Machine

Learning in Medicine. J Bioeth Inq. 2021;18(1):121-139. doi:

10.1007/s11673-020-10080-1.

53. Chen N, Li Z, Tang B. Can digital skill protect against job

displacement risk caused by artificial intelligence? Empirical

evidence from 701 detailed occupations. PLoS One. 2022

;17(11):e0277280. doi: 10.1371/journal.pone.0277280.

54. Nordblom NF, Büttner M, Schwendicke F. Artificial

Intelligence in Orthodontics: Critical Review. J Dent Res.

2024;103(6):577-584. doi: 10.1177/00220345241235606.

55. Pianykh OS, Langs G, Dewey M, Enzmann DR, Herold CJ,

Schoenberg SO, Brink JA. Continuous Learning AI in

Radiology: Implementation Principles and Early Applications.

Radiology. 2020 ;297(1):6-14. doi: 10.1148/radiol.2020200038.

56. Peters U. Algorithmic Political Bias in Artificial Intelligence

Systems. Philos Technol. 2022;35(2):25. doi: 10.1007/s13347-

022-00512-8.

57. Ostherr K. Artificial Intelligence and Medical Humanities. J

Med Humanit. 2022 ;43(2):211-232. doi: 10.1007/s10912-

020-09636-4.

58. Haibe-Kains B, Adam GA, Hosny A, Khodakarami F; Massive

Analysis Quality Control (MAQC) Society Board of Directors;

Waldron L, Wang B, McIntosh C, Goldenberg A, Kundaje A,

Greene CS, Broderick T, Hoffman MM, Leek JT, Korthauer

K, Huber W, Brazma A, Pineau J, Tibshirani R, Hastie T,

Ioannidis JPA, Quackenbush J, Aerts HJWL. Transparency

and reproducibility in artificial intelligence. Nature.

2020;586(7829):E14-E16. doi: 10.1038/s41586-020-2766-y.

59. Wadhwa V, Alagappan M, Gonzalez A, Gupta K, Brown JRG,

Cohen J, Sawhney M, Pleskow D, Berzin TM. Physician

sentiment toward artificial intelligence (AI) in colonoscopic

practice: a survey of US gastroenterologists. Endosc Int Open.

2020 ;8(10):E1379-E1384. doi: 10.1055/a-1223-1926.

60. Zhou C, Pan S, Zhou T, editors. Design and implementation

of software simulation system for dental orthodontic robot

In: IOP Conference Series: Materials Science and Engineering.

Bristol: IOP Publishing; 2019.

Downloads

Published

2025-01-07

How to Cite

Naureen, S. (2025). Limitations of Artificial Intelligence in Orthodontics. Literature Review. Journal of Bahria University Medical and Dental College, 15(01), 53–59. https://doi.org/10.51985/JBUMDC2024452

Issue

Section

Review Article

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/u735751794/domains/bahria.edu.pk/public_html/ojs_jbumdc/plugins/generic/citations/CitationsPlugin.inc.php on line 49