ABSTRACT

Objective: To determine the prevalence of carbapenem resistance in strains of *Pseudomonas aeruginosa* at a molecular level by detecting OXA-48 gene which transcribe for resistance to the antibiotic carbapenem among indoor patients of a tertiary care hospital Karachi.

Study Design and Setting: This observational cross-sectional study was conducted from September 2018 to May 2019 at PNS Shifa hospital of Karachi.

Methodology: Total 140 strains of *Pseudomonas aeruginosa* were received and cultured from pus samples. These samples were collected from different wards like medicine, surgery, burn unit, ICU, ENT, plastic surgery, paedriatic and family ward. Carbapenem resistance was screened phenotypically by AST (Antibiotic susceptibility test), MHT (Modified Hodge test) and mCIM (Modified Carbapenem Inactivation Method) in all samples. Only in resistant cases OXA-48 gene was detected by real time PCR (polymerase chain reaction). Data was analyzed by following the proper loading sequence on product specification sheet. Data was statistically analyzed by SPSS version 23.0. Results were expressed as frequencies (percentages).

Results: Out of 140, 17 (12%) were found to be resistant to carbapenem by AST, 20 (14%) by MHT, 25 (17.8%) by mCIM. Out of 25 resistant cases, 4 (16%) presence of OXA-48 gene by real time PCR were detected.

Conclusion: OXA-48 gene showed 16% carbapenem resistance in this study. *Pseudomonas aeruginosa* is an opportunistic organism which causes multidrug resistance especially in hospitalized patients. Carbapenem is the last resort for serious infections.

Keywords: carbapenem resistance, OXA-48 gene, *Pseudomonas aeruginosa*, real time PCR,
(meropenem, imipenem, doripenem and ertapenem) are the last option in some debilitating infections caused by this group of bacteria. This drug is capable of treating life threatening infections of extended spectrum β-lactamase producing isolates of Pseudomonas aeruginosa. Excessive use of carbapenem has led towards a pattern of resistance. These resistant genes are grouped into different classes. According to Ambler’s classification, these are categorized into class A serine β-lactam (KPC), class B metallo beta lactemases that contain zinc at active site (VIM,IMP,NDM), and class D carbapenemase serine β-lactam (OXA-48). OXA-48 has ability to hydrolyze carbapenems by breaking its beta-lactam ring. Detection of OXA-48 was first time reported in isolates of Enterobacteriaceae in Turkey in 2001. Isolates carrying these genes have been reported all over the world. It was further reported in Europe and Middle East. OXA-48 gene has now also reported in gram negative bacteria in neighboring countries like India, China, Iran and Bangladesh. Different phenotypic and molecular methods have been employed to detect carbapenem resistance. Molecular methods are gold standard for detection genotypic resistance. At molecular level genes NDM, KPC, VIP and IMP have been reported in Pakistan, but OXA-48 has not been detected in strains of Pseudomonas aeruginosa in our country. This resistant gene was detected with help of real time PCR. It is quantitative test with high level of accuracy, high sensitivity and high specificity.

In this study, we detected blaOXA-48 transcribing resistance towards carbapenem 16% in strains of Pseudomonas aeruginosa in a tertiary care hospital of Karachi within time period of one year.

METHODOLOGY:
This observational cross sectional, study was conducted at PNS Shifa (tertiary care hospital) Karachi. Sample size was calculated by WHO calculator with prevalence rate 10.2%. Specimens of Pseudomonas aeruginosa were received from different wards of hospital from Jan 2018-Jan 2019. This study was approved by both Ethical Review Committee of Bahria University Medical and Dental College and from PNS Shifa. Written consent was obtained from hospitalized patients after briefing the purpose of research work.

The strains of Pseudomonas aeruginosa were collected from pus swab of infected site from different body parts. These pus swabs were received at microbiology laboratory from different wards. Repeat samples, out-door patients and patients already on antibiotics were excluded. Samples were collected from several wards like Intensive care unit, Burn unit, Plastic surgery, General surgery, ENT (ear, nose and throat) ward, Paedriatic ward, medicine and family ward. Microorganisms were considered as gram negative Pseudomonas aeruginosa on basis of gram staining, blood culture, MacConkey agar and oxidase test (Scien cell). Carabapenem like meropenem 10µg (oxoid) and imipenem 10µg (oxoid) susceptibility were checked by antibiotic susceptibility test (disc diffusion method) according to CLSI (clinical laboratory standard institute). Screening of carbamanimase producing Pseudomonas aeruginosa was done by MHT (Modified Hodge Test) and mCIM (Modified carbapenemase inactivation method).

Genotypic resistance of Pseudomonas aeruginosa was confirmed by detecting blaOXA-48 gene with help of real time PCR (polymerase chain reaction) as per Figure 1. Microbial DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit. DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2X10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.

DNA was extracted from culture of up to 2×10⁹ bacterial cells with help of Qiagen Medical DNA qPCR assay kit.
RESULTS:
Among the total 140 samples of *Pseudomonas aeruginosa*, 17 cases (12%) exhibited resistance towards carbapenem by (AST method), 20 (14%) resistant cases by MHT and 25 (17.9%) cases by mCIM. These 25 resistant cases were further evaluated for detection of resistant gene OXA-48 as per Figure 2. We detected OXA-48(n=4) (16%) resistant genes, in strains of *Pseudomonas aeruginosa*.

![Table 1: Primers for detection of OXA-48 in *Pseudomonas aeruginosa*](image)

<table>
<thead>
<tr>
<th>Targeted Gene</th>
<th>Kit Name</th>
<th>Primer Name</th>
<th>Sequence (5’-3’ Direction)</th>
<th>Length Bases</th>
<th>Amplicon Size, bp</th>
<th>Temp in °C</th>
<th>Primer conc, pmol/µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXA-48</td>
<td>Qiagen Microbial DNA qPCR Assay Kit</td>
<td>Reverse</td>
<td>ACGACGGCATAGTCATTGTC</td>
<td>20</td>
<td>585 or 597</td>
<td>56</td>
<td>15pmo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forward</td>
<td>ACGGGCGAACCAAGCATTTT</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Confirmation of extracted DNA (Optical density)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54.90g/µl</td>
</tr>
<tr>
<td>2</td>
<td>45.81g/µl</td>
</tr>
<tr>
<td>3</td>
<td>93.66g/µl</td>
</tr>
<tr>
<td>4</td>
<td>67.30g/µl</td>
</tr>
<tr>
<td>5</td>
<td>89.43g/µl</td>
</tr>
<tr>
<td>6</td>
<td>185.70g/µl</td>
</tr>
<tr>
<td>7</td>
<td>288.67g/µl</td>
</tr>
<tr>
<td>8</td>
<td>82.10g/µl</td>
</tr>
</tbody>
</table>

DISCUSSION:
*Pseudomonas aeruginosa* is normal flora of human beings but whenever it gets opportunity it will become pathogenic and cause nosocomial infections. These infections are caused by imprudent utilization of antibiotics, surgical intervention and use of equipments. The resistance that is displayed by microorganisms towards multiple antibiotics can be both intrinsic and acquired or extrinsic. Resistant nosocomial infections do not respond to conventional antibiotics, and have for the last ten years inculcated a fear among health care facilitators.18

There are many phenotypic and genotypic methods for detection of carbapenamase producing *Pseudomonas aeruginosa*. Phenotypic methods are AST (Antibiotic sensitivity test), CDDT (combination disk diffusion test), MHT (Modified Hodge Test), mCIM (Modified carbapenem inactivation method), and genotypic methods are PCR amplification, MALDI TOFF (Matrix assisted laserdesorption / ionization-time of flight), real timePCR.19 Carbapenem resistance towards *Pseudomonas aeruginosa*by phenotypic methods AST n=17 (12%) were detected according to CLSI (Clinical and laboratory standard institutes), MHT n=20 (14%) and mCIM n=25 (17.8%). Abbas et al exhibited carbapenem resistance 9.3% in isolates of *Pseudomonas aeruginosa* detected by AST which was higher as compared to our study.20 Different studies described mCIM as a simple, accurate and reliable method for detection of carbapenem in accordance with our study.21-23 Phenotypic methods are screening methods. Genotypic methods are used for detection of multiple resistant genes. Multiple genes are involved in resistance like KPC, VIM, IMP, SIM, GES and NDM. In our study we only detected the presence of OXA-48 n=4 (16%) by using real time PCR. OXA-48 has been reported in different parts of the world. First OXA-48 gene was detected in Istanbul, Turkey. It has been found in African countries, Middle East, China, Afghanistan and India.24 Our findings are in accordance with other studies like Bonnin et al recommended real time PCR as highly accurate and specific method.25 This study focused on blaOXA-48 as it has not been found in strains of *Pseudomonas aeruginosa* in previous studies in Pakistan, while it is present in other neighbouring countries. Begum and Shamsuz zaman (2016) detected OXA-48 20% in Dhaka.26 There is threat of
BlaOXA-48 Genotypic Detection of Carbapenem Resistance in Isolates of Pseudomonas Aeruginosa

dissemination of this gene through horizontal gene transfer as Bangladesh is our neighboring country. According to study in Sudan Mohamed et al, OXA-48 exhibited resistance towards Pseudomonas aeruginosa was 22.4% which is quite close to our study.27 Van der Zee et al (2014) detected carbapenem resistant gene OXA-48 by real time PCR as accurate and reliable method in association with our study.28

Advances in diagnostic technologies have transformed the scenario of alleviating life threatening infections and have played pivotal role in contribution towards human health. It is the lack of motivation and interest of stake holders that now under minesserious problems such as nosocomial infections and antibiotic resistance by microorganisms like Pseudomonas aeruginosa. Although it is possible to overcome all these fatal infections through strict surveillance of resistant isolates economic problem in a resource poor country like ours hinders progress and allows dissemination of resistant genes. Hence ß-lactamases are transcribed by various genes like VIM, IMP, KPC, and so on. These genes are transferred from resistant strains to sensitive strains and have been reported in Pakistan. OXA-48 which transcribes class D was not previously reported in strains of Pseudomonas aeruginosa in Pakistan.

The foremost limitation of our study is that results cannot be generalized as we took data only from one Military set up where the subject population does not match the demograph of our country. OXA-48 gene showed 16% carbapenem resistance because of small sample size. Our study included only hospitalized patients. There are multiple carbapenemase genes and their allelic variants we looked for only OXA-48 gene using uniplex primers.

CONCLUSION:

Carbapenem resistance in strains of Pseudomonas aeruginosa due to the gene blaOXA-48 is accounted for 16% of tested cases, microorganisms can acquire extensive genetic diversity through acquisition of resistant genes and this converts a non pathogenic bacteria into pathogenic, which can disseminate at high rate, creating an antibiotic resistance crisis. Detection of these cases and establishing surveillance programs for control of antibiotic resistance will go a long way in resolving this problem.

REFERENCES:

4. Zanganeh Z, Eftekhar F. Correlation of oxacillinase gene carriage with the genetic fingerprints of imipenem-resistant clinical isolates of Acinetobacter baumannii. JMM. 2015 8(9).


