INTRODUCTION:

Patients with End Stage Renal Disease undergo hemodialysis through AV fistula on regular basis, which is a preferred access site. Thereby, its dysfunction, mainly inflow and outflow stenosis is not uncommon as well. Earlier, quite a number of studies had done which assessed the accuracy of various arteriovenous detection tools separately, in comparison with the gold standard i.e. angiography. Heye conducted a study in which he assessed the diagnostic value of MDCT angiography in evaluation of arteriovenous fistula stenosis detection, when compared with DSA (Digital Subtraction Angiography). Another study assessed the accuracy of Doppler ultrasound in detection of inflow stenosis when compared with angiography. This study showed that Doppler ultrasound has 91% sensitivity in inflow stenosis detection. To highlight the importance of physical examination in arteriovenous fistula detection, a study showed that it had 85% sensitivity in inflow stenosis detection and 92% sensitivity in detection of outflow stenosis when compared with angiography. In all these studies, the diagnostic tools, physical examination, Doppler ultrasound and MDCT angiography, had been compared individually with the gold standard, Angiography.

The aim of our study was to compare physical examination with MDCTA and Doppler ultrasound in detection of AVF stenosis.
pulse, absent/decreased thrill and abnormal augmentation test. While diagnostic criteria for outflow stenosis included presence of water hammer pulse and a positive arm elevation test.\(^5,6\) In our study physical examination was done on AVF which had been in use for over 6 months. Physical examination criterion for both inflow stenosis and outflow stenosis was derived from the guidelines of National Kidney Foundation and Beathard GA.\(^7,8\) Doppler ultrasound was conducted with a portable system (Mindray Diagnostic Ultrasound system with color Doppler facility, with a frequency of 6-14MHz) criterion for stenosis was >50 %. For MDCTA\(^9\) (16 slice Spiral MDCT, Toshiba Aquillion), contrast was administered in a peripheral vein in contra- lateral arm. Stenosis of 50% or more was considered significant. Images were viewed and reported by consultant radiologist. The patients who had been referred for evaluation of AVF dysfunction had physical examination of their fistula done by the nephrology team, comprising of consultant Nephrologist and resident in nephrology, followed by Doppler ultrasound and then MDCT angiography, all at the same day before a scheduled hemodialysis session. The results of each investigator were recorded separately and sealed in envelope, and were evaluated by the principle investigator. Study endpoints were demonstrating that Physical examination, MDCTA and Doppler ultrasound are comparable to each other in detection of AVF stenosis.

Statistical Analysis:

Study variables were Dichotomous i.e. presence or absence of lesion, were analyzed using Cohen’s Kappa value, which determined the level of agreement beyond chance between the diagnosis made by physical examination and that by MDCTA and Doppler ultrasound. K value: 0.0-1.0 interpretation: zero indicates no agreement beyond chance, whereas 1.0 denotes perfect agreement beyond chance. 0.0-0.2 to 0.2-0.4 implies fair agreement, 0.4-0.6 implies moderate agreement and >0.6 indicates significant agreement. Data was recorded in Microsoft Office 2007 using SPSS20.

RESULTS:

20 patients were found eligible for the study as per inclusion criteria. However, 5 declined to enter into the study. Rest of the 15 patients completed the study. No patient had any reaction to the contrast (low osmolar, nonionic) given. Data of 15 patients with AVF dysfunction; who had undergone physical examination, Doppler ultrasound and MDCTA; was analyzed. Demographic characteristics of the study cases are shown in (Table 1). Out of 15, 9 fistulas were located in upper arm and 6 in forearm. The data analysis revealed that 4 out of 15 showed normal physical examination and MDCTA and Doppler ultrasound did not reveal any abnormality in those 4 cases as well. On the other hand 11 patients showed gross abnormalities on physical examination and 9 out of 11 had the same abnormality on MDCTA. On comparison with Doppler ultrasound, 6 out of 11 detected the same lesion, while it did not detect 5 cases as were detected by both physical examination and MDCTA(Table 1). Cohen’s Kappa value calculated for detection of inflow stenosis between physical examination and MDCTA was K: 0.865 which showed significant level of agreement between both. Kappa value for inflow stenosis, between physical examination and Doppler ultrasound was K: 0.471, which showed moderate level of agreement. The Kappa value for outflow stenosis, between physical examination and MDCTA was K: 0.602 and that for comparison between physical examination and Doppler ultrasound was K: 0.444. This showed that Doppler ultrasound was inferior in both inflow and outflow stenosis detection when compared with physical examination. Level of agreement was also calculated between MDCTA and Doppler ultrasound which showed k: 0.545 for inflow stenosis and k: 0.375 for outflow stenosis, which was moderate and fair level of agreement, respectively. (Table 2). Analysis of the forearm and upper arm fistulas showed no difference in level of agreement between these 3 modalities.

TABLE 1

Demographic characteristics of the study cases

| No. of cases | 15 |
| Gender |
| Male | 10 |
| Female | 5 |
| Causes of ESRD |
Hypertension	4
Diabetic nephropathy	5
Glomerulonephritis	3
Obstructive uropathy	3
Type of Fistula	
Forearm	6
Arm	9

TABLE 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inflow Stenosis</th>
<th>Outflow Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam./MDCTA</td>
<td>K:0.865</td>
<td>K:0.602</td>
</tr>
<tr>
<td>Physical exam./Doppler u/s</td>
<td>K:0.471</td>
<td>K:0.444</td>
</tr>
<tr>
<td>MDCTA/Doppler u/s</td>
<td>K:0.545</td>
<td>K:0.375</td>
</tr>
</tbody>
</table>
DISCUSSION:
AVF stenosis and its detection had been an important area of discussion and research in interventional nephrology and radiology.10,11 Quite a number of studies have been conducted to emphasize on variety of diagnostic tools in detection of stenosis.12,13 A study determined the accuracy of Doppler ultrasound in detection of AVF stenosis when compared with angiography.14 In this study they used portable Doppler ultrasound (sonosite, St.Paul.MN) results showed increased sensitivity and specificity of Doppler ultrasound in detection of lesion (91% and 98%, respectively) but it did not mentioned the technical specification of the Doppler ultrasound. However, our study showed that ColorDoppler (6-14 MHz) was inferior to MDCTA in detecting outflow stenosis. Studies have highlighted the accuracy of physical examination in detection of AVF stenosis when compared with angiography, the gold standard. In one of the studies the examination was done by a resident who was given training in examination of the fistula. Studies have shown significant agreement and therefore high accuracy of physical examination when compared to MDCTA in stenosis detection. However, in our study the clinical examination was done by a consultant Nephrologist. A study compared accuracy of 64MDCTA Scanner (somatom sensation 64, Siemens medical solutions) with digital subtraction angiography. This study revealed that 64 MDCTA had 90.2% sensitivity in stenosis detection21. Our study compared 3 modalities i.e. physical examination, Doppler ultrasound and MDCTA in detection of AVF stenosis and results thereby inferred that physical examination was equivalent, non inferior to MDCTA and superior to Doppler ultrasound in detection of the lesion. For outflow stenosis Doppler ultrasound was inferior to both physical examination and MDCTA.22,23,24,25 This study has some limitations like the small sample size and that the physical examinations were done by a consultant Nephrologist, with a considerable experience in the test.
In future, further studies in this context should be done on a larger sample of patients and by multiple examiners of different level of training, to further authenticate results of this study and comparison of different Doppler ultrasound machines to establish technical specifications as the cause of inferiority or superiority in AVF stenosis detection.

CONCLUSION:
Physical examination is an important tool in AVF stenosis detection and is found to be superior to Doppler ultrasound in lesion detection especially outflow stenosis. MDCTA can be considered as an alternative to conventional angiography in armed forces class A hospitals for detecting AV fistula stenosis in order to decide transfer of the patient to tertiary care center for definitive management i.e. angioplasty or stenting.

ACKNOWLEDGEMENTS:
The authors extend their thanks to Dr. Taimur and Dr. Asma Tariq for conducting doppler ultrasound of arteriovenous fistulae and reporting them as well.

REFERENCES:
2. Ko SF, Huang CC, Ng SH. MDCT angiography for evaluation of the complete vascular tree of hemodialysis fistula. AJR 2005;185:1268-74

20. Leypoldt JK. Diagnostic methods for vascular access: access flow measurements contributions to Nephrology 2002;137: 31-37

